AIM To observe the changes in erythrocyte membrane ATPases and plasma lipid peroxides (LPO) patients with in abdominal surgery under intravenous procaine-balanced anesthesia.METHODS By determining the ATPase activitie...AIM To observe the changes in erythrocyte membrane ATPases and plasma lipid peroxides (LPO) patients with in abdominal surgery under intravenous procaine-balanced anesthesia.METHODS By determining the ATPase activities of erythrocyte membrane, effects of upper abdominal surgery under intravenous procaine-balanced anesthesia on the function of erythrocytes were observed in 15 patients undergoing cholecystectomy and gastrectomy (5 males and 10 females, aged 45.9±10.20 years and weighed 60.60kg±11.93kg). All patients were free from severe renal, hepatic, pulmonary, cardiac, metabolic and endocrinological diseases and acute infection for at least 2 weeks before surgery. Patients receiving any drug known to affect carbohydrate metabolism prior to anesthesia were excluded from the study.RESULTS Erythrocyte membrane Na+, K+-ATPase, Mg2+-ATPase, Ca2+, Mg2+-ATPase activities were not significantly changed 60min-90min after incision as compared with 30min before anesthesia, but were decreased markedly 10min and 24 hours after completion of operation (P<0.01). Plasma lipid peroxides (LPO) were increased significantly 24 hours after surgery (P<0.01) following an initially marked but transient reduction. Plasma LPO changes were not correlated with erythrocyte membrane ATPase activities, r=-0.0396, -0.0097 and 0.4383, respectively (P>0.05).CONCLUSION Abdominal surgical trauma under intravenous procaine-balanced anesthesia may be associated with the decreased ATPase activities of erythrocyte membrane and increased LPO in plasma.展开更多
P1B-type ATPase ion pumps that transport heavy metal ions across cellular membranes are essential for plant growth and development. To date, a genomic comparison overview of the family in rice, maize and sorghum is no...P1B-type ATPase ion pumps that transport heavy metal ions across cellular membranes are essential for plant growth and development. To date, a genomic comparison overview of the family in rice, maize and sorghum is not yet available. In this study, a total of 31 heavy metal P1B-type ATPase (HMA) genes were identified, including 9 in rice, 11 each from maize and sorghum. They were classified into two distinct subfamilies based on their sequence composition and phylogenetic relationship. Four pairs of HMA genes were expanded via gene duplication with tandemly duplicated. Comprehensive analyses were performed to investigate the expression profiles of HMA genes in various tissues by using quantitative real-time PCR. Some HMA members exhibited abundant and tissue-specific expression patterns. Moreover, most of the genes were found to be differentially expressed under the Cu/Cd treatment. This study will facilitate further studies on P1B-type ATPase family and provide valuable hints for the functional validation in rice, maize and sorghum.展开更多
Calcium signaling is used by neurons to control a variety of functions,including cellular differentiation,synaptic maturation,neurotransmitter release,intracellular signaling and cell death.This review focuses on one ...Calcium signaling is used by neurons to control a variety of functions,including cellular differentiation,synaptic maturation,neurotransmitter release,intracellular signaling and cell death.This review focuses on one of the most important Ca2+regulators in the cell,the plasma membrane Ca2+-ATPase(PMCA),which has a high affinity for Ca2+and is widely expressed in brain.The ontogeny of PMCA isoforms,linked to specific requirements of Ca2+ during development of different brain areas,is addressed, as well as their function in the adult tissue.This is based on the high diversity of variants in the PMCA family in brain,which show particular kinetic differences possibly related to specific localizations and functions of the cell. Conversely,alterations in the activity of PMCAs could lead to changes in Ca2+homeostasis and,consequently,to neural dysfunction.The involvement of PMCA isoforms in certain neuropathologies and in brain ageing is also discussed.展开更多
Objective:To identify the alleralinn of the membrane polenlial and llie effect of carolenoid extracts from Chlorococcum hnmicola(C.humicola) on membrane hound ATPases and lipid peroxidation.Methods:The lolal carotenoi...Objective:To identify the alleralinn of the membrane polenlial and llie effect of carolenoid extracts from Chlorococcum hnmicola(C.humicola) on membrane hound ATPases and lipid peroxidation.Methods:The lolal carotenoids were extracted from C.humicola.Four groups of Swiss albino mice were treated as control,Benzo(a)pyrene[B(a)P],total carotenoids,B(a)P+ total caralenoids respectively for a period of 60 days.Membrane lipid peroxidation and ATPases(Total ATPases,Ca^(2+)-ATPases.Mg^(2+)-ATPases.Na^+K^+- ATPasei were determined in lung,liver and erythrocyte samples.Results:The activity of lolal ATPase was found to be significantly increased in the B(a)P treated liver and lung tissue.Erythrocyte membrane also showed higher ATPase activity which was significantly reverted on total carolenoid treatment.Conclusions: It can be concluded that the changes in membrane potential favour the functional deterioration of physiological system.The overall findings demonstrates that the animals post treated with carolenoid extract from C.humicola may maintains the alterations in membrane bound ATPase and lipid peroxidation in tissues against the carcinogenic chemical and hence aid in establishing the membrane potential action.Then-fore C.humicola can be further extended to exploits its possible application for various health benefits as neulraceulicals and food additives.展开更多
Purine nucleotides are crucial for the effective operation of cell membrane proteins maintaining the neurotransmitter responses of 5-HT. Major protein targets in the treatment of depression include SERT, N/K ATPase an...Purine nucleotides are crucial for the effective operation of cell membrane proteins maintaining the neurotransmitter responses of 5-HT. Major protein targets in the treatment of depression include SERT, N/K ATPase and GPCR. Each protein target is responsive to a specific complement of drugs: antidepressants (SERT), lithium and cardiogenic steroids (N/K ATPase), 5-HT receptor ligands (GPCR). Computational software is useful for comparing molecular similarity within ligand-ligand and ligand-nucleotide structures. Previous studies demonstrate that GPCR ligands of different pharmacologic classes display relative molecular similarity to nucleotide structures. The current study applies this methodology to compound structures modulating SERT and N/K ATPase receptors. Minimum energy conformers of SERT antagonists demonstrate relative molecular similarity to the structural template of GTP nucleotide. GTP template fits of 5-HT and psilocin are similar, whereas a SERT-like fit is one of several for the ketamine structure. Endogenous and pharmaceutical modulators of Na/K ATPase relate to adenine nucleotide. The fits of cardiogenic steroids to a cGMP template demonstrate similarities and differences between compounds. Relative molecular similarity within the structures of hormones, drugs and nucleotides has implications for neurotransmitter transport and cell signal transduction processes.展开更多
为研究盐度渐变对日本囊对虾的机体免疫的影响,实验设置了4个盐度梯度分别为26、22、18和14,统计了各盐度下日本囊对虾累计死亡率,检测了日本囊对虾体内血清总蛋白(TP)含量、碱性磷酸酶(AKP)和酸性磷酸酶(ACP)、血清ATP酶(Na^(+)/K^(+)-...为研究盐度渐变对日本囊对虾的机体免疫的影响,实验设置了4个盐度梯度分别为26、22、18和14,统计了各盐度下日本囊对虾累计死亡率,检测了日本囊对虾体内血清总蛋白(TP)含量、碱性磷酸酶(AKP)和酸性磷酸酶(ACP)、血清ATP酶(Na^(+)/K^(+)-ATPase和T-ATPase)、超氧化物歧化酶(SOD)和多酚氧化酶(PPO)的动态变化。结果显示,盐度渐变胁迫下各盐度组累计死亡率的大小为14>18>22>26,血清蛋白含量随胁迫强度的增加和胁迫时间的延长呈下降趋势,后随着盐度回升而上升。24~72 h ACP和AKP活力表现为盐度组14<18<22<26,且随时间的延长呈下降趋势,Na^(+)/K^(+)-ATPase和T-ATPase活力显示出盐度梯度差异显著,14盐度组显著高于其它盐度组(P<0.05),SOD活力与PPO活力受盐度胁迫强度和胁迫时间的影响显著,盐度胁迫强度越强,SOD活力与对照组的差异越显著(P<0.05),血清PPO活力的变化趋势越明显。日本囊对虾机体免疫受盐度胁迫显著,研究结果为日本囊对虾的健康养殖提供重要的理论指导及借鉴。展开更多
The plasma membrane Ca2+-ATPase(PMCA)pumps play an important role in the maintenance of precise levels of intracellular Ca2+[Ca2+]i,essential to the functioning of neurons.In this article,we review evidence showing ag...The plasma membrane Ca2+-ATPase(PMCA)pumps play an important role in the maintenance of precise levels of intracellular Ca2+[Ca2+]i,essential to the functioning of neurons.In this article,we review evidence showing age-related changes of the PMCAs in synaptic plasma membranes(SPMs).PMCA activity and protein levels in SPMs diminish progressively with increasing age. The PMCAs are very sensitive to oxidative stress and undergo functional and structural changes when exposed to oxidants of physiological relevance.The major signatures of oxidative modification in the PMCAs are rapid inactivation,conformational changes,aggregation, internalization from the plasma membrane and proteolytic degradation.PMCA proteolysis appears to be mediated by both calpains and caspases.The predominance of one proteolytic pathway vs the other,the ensuing pattern of PMCA degradation and its consequence on pump activity depends largely on the type of insult,its intensity and duration.Experimental reduction of PMCA expression not only alters the dynamics of cellular Ca2+ handling but also has a myriad of downstream conse-quences on various aspects of cell function,indicating a broad role of these pumps.Age-and oxidation-related down-regulation of the PMCAs may play an important role in compromised neuronal function in the aging brain and its several-fold increased susceptibility to neurodegenerative disorders such as Alzheimer's disease, Parkinson's disease,and stroke.Therapeutic approaches that protect the PMCAs and stabilize[Ca2+]i homeostasis may be capable of slowing and/or preventing neuronal degeneration.The PMCAs are therefore emerging as a new class of drug targets for therapeutic interventions in various chronic degenerative disorders.展开更多
文摘AIM To observe the changes in erythrocyte membrane ATPases and plasma lipid peroxides (LPO) patients with in abdominal surgery under intravenous procaine-balanced anesthesia.METHODS By determining the ATPase activities of erythrocyte membrane, effects of upper abdominal surgery under intravenous procaine-balanced anesthesia on the function of erythrocytes were observed in 15 patients undergoing cholecystectomy and gastrectomy (5 males and 10 females, aged 45.9±10.20 years and weighed 60.60kg±11.93kg). All patients were free from severe renal, hepatic, pulmonary, cardiac, metabolic and endocrinological diseases and acute infection for at least 2 weeks before surgery. Patients receiving any drug known to affect carbohydrate metabolism prior to anesthesia were excluded from the study.RESULTS Erythrocyte membrane Na+, K+-ATPase, Mg2+-ATPase, Ca2+, Mg2+-ATPase activities were not significantly changed 60min-90min after incision as compared with 30min before anesthesia, but were decreased markedly 10min and 24 hours after completion of operation (P<0.01). Plasma lipid peroxides (LPO) were increased significantly 24 hours after surgery (P<0.01) following an initially marked but transient reduction. Plasma LPO changes were not correlated with erythrocyte membrane ATPase activities, r=-0.0396, -0.0097 and 0.4383, respectively (P>0.05).CONCLUSION Abdominal surgical trauma under intravenous procaine-balanced anesthesia may be associated with the decreased ATPase activities of erythrocyte membrane and increased LPO in plasma.
基金supported by the Special Fund for Agro-Scientific Research in the Public Interest of China(Grant No.201403015)
文摘P1B-type ATPase ion pumps that transport heavy metal ions across cellular membranes are essential for plant growth and development. To date, a genomic comparison overview of the family in rice, maize and sorghum is not yet available. In this study, a total of 31 heavy metal P1B-type ATPase (HMA) genes were identified, including 9 in rice, 11 each from maize and sorghum. They were classified into two distinct subfamilies based on their sequence composition and phylogenetic relationship. Four pairs of HMA genes were expanded via gene duplication with tandemly duplicated. Comprehensive analyses were performed to investigate the expression profiles of HMA genes in various tissues by using quantitative real-time PCR. Some HMA members exhibited abundant and tissue-specific expression patterns. Moreover, most of the genes were found to be differentially expressed under the Cu/Cd treatment. This study will facilitate further studies on P1B-type ATPase family and provide valuable hints for the functional validation in rice, maize and sorghum.
基金Supported by Grants No.BFU2008-00182 from MICINN,Fundación Marcelino Botín,Spain(to Mata AM)Sepulveda MR received a Postdoctoral Fellowship from Programa de Reincorpo-ración de Doctores,Junta de Extremadura,Spain
文摘Calcium signaling is used by neurons to control a variety of functions,including cellular differentiation,synaptic maturation,neurotransmitter release,intracellular signaling and cell death.This review focuses on one of the most important Ca2+regulators in the cell,the plasma membrane Ca2+-ATPase(PMCA),which has a high affinity for Ca2+and is widely expressed in brain.The ontogeny of PMCA isoforms,linked to specific requirements of Ca2+ during development of different brain areas,is addressed, as well as their function in the adult tissue.This is based on the high diversity of variants in the PMCA family in brain,which show particular kinetic differences possibly related to specific localizations and functions of the cell. Conversely,alterations in the activity of PMCAs could lead to changes in Ca2+homeostasis and,consequently,to neural dysfunction.The involvement of PMCA isoforms in certain neuropathologies and in brain ageing is also discussed.
基金Supported by Bharathiar university.coimbatore,Tamilnadu India
文摘Objective:To identify the alleralinn of the membrane polenlial and llie effect of carolenoid extracts from Chlorococcum hnmicola(C.humicola) on membrane hound ATPases and lipid peroxidation.Methods:The lolal carotenoids were extracted from C.humicola.Four groups of Swiss albino mice were treated as control,Benzo(a)pyrene[B(a)P],total carotenoids,B(a)P+ total caralenoids respectively for a period of 60 days.Membrane lipid peroxidation and ATPases(Total ATPases,Ca^(2+)-ATPases.Mg^(2+)-ATPases.Na^+K^+- ATPasei were determined in lung,liver and erythrocyte samples.Results:The activity of lolal ATPase was found to be significantly increased in the B(a)P treated liver and lung tissue.Erythrocyte membrane also showed higher ATPase activity which was significantly reverted on total carolenoid treatment.Conclusions: It can be concluded that the changes in membrane potential favour the functional deterioration of physiological system.The overall findings demonstrates that the animals post treated with carolenoid extract from C.humicola may maintains the alterations in membrane bound ATPase and lipid peroxidation in tissues against the carcinogenic chemical and hence aid in establishing the membrane potential action.Then-fore C.humicola can be further extended to exploits its possible application for various health benefits as neulraceulicals and food additives.
文摘Purine nucleotides are crucial for the effective operation of cell membrane proteins maintaining the neurotransmitter responses of 5-HT. Major protein targets in the treatment of depression include SERT, N/K ATPase and GPCR. Each protein target is responsive to a specific complement of drugs: antidepressants (SERT), lithium and cardiogenic steroids (N/K ATPase), 5-HT receptor ligands (GPCR). Computational software is useful for comparing molecular similarity within ligand-ligand and ligand-nucleotide structures. Previous studies demonstrate that GPCR ligands of different pharmacologic classes display relative molecular similarity to nucleotide structures. The current study applies this methodology to compound structures modulating SERT and N/K ATPase receptors. Minimum energy conformers of SERT antagonists demonstrate relative molecular similarity to the structural template of GTP nucleotide. GTP template fits of 5-HT and psilocin are similar, whereas a SERT-like fit is one of several for the ketamine structure. Endogenous and pharmaceutical modulators of Na/K ATPase relate to adenine nucleotide. The fits of cardiogenic steroids to a cGMP template demonstrate similarities and differences between compounds. Relative molecular similarity within the structures of hormones, drugs and nucleotides has implications for neurotransmitter transport and cell signal transduction processes.
文摘为研究盐度渐变对日本囊对虾的机体免疫的影响,实验设置了4个盐度梯度分别为26、22、18和14,统计了各盐度下日本囊对虾累计死亡率,检测了日本囊对虾体内血清总蛋白(TP)含量、碱性磷酸酶(AKP)和酸性磷酸酶(ACP)、血清ATP酶(Na^(+)/K^(+)-ATPase和T-ATPase)、超氧化物歧化酶(SOD)和多酚氧化酶(PPO)的动态变化。结果显示,盐度渐变胁迫下各盐度组累计死亡率的大小为14>18>22>26,血清蛋白含量随胁迫强度的增加和胁迫时间的延长呈下降趋势,后随着盐度回升而上升。24~72 h ACP和AKP活力表现为盐度组14<18<22<26,且随时间的延长呈下降趋势,Na^(+)/K^(+)-ATPase和T-ATPase活力显示出盐度梯度差异显著,14盐度组显著高于其它盐度组(P<0.05),SOD活力与PPO活力受盐度胁迫强度和胁迫时间的影响显著,盐度胁迫强度越强,SOD活力与对照组的差异越显著(P<0.05),血清PPO活力的变化趋势越明显。日本囊对虾机体免疫受盐度胁迫显著,研究结果为日本囊对虾的健康养殖提供重要的理论指导及借鉴。
文摘The plasma membrane Ca2+-ATPase(PMCA)pumps play an important role in the maintenance of precise levels of intracellular Ca2+[Ca2+]i,essential to the functioning of neurons.In this article,we review evidence showing age-related changes of the PMCAs in synaptic plasma membranes(SPMs).PMCA activity and protein levels in SPMs diminish progressively with increasing age. The PMCAs are very sensitive to oxidative stress and undergo functional and structural changes when exposed to oxidants of physiological relevance.The major signatures of oxidative modification in the PMCAs are rapid inactivation,conformational changes,aggregation, internalization from the plasma membrane and proteolytic degradation.PMCA proteolysis appears to be mediated by both calpains and caspases.The predominance of one proteolytic pathway vs the other,the ensuing pattern of PMCA degradation and its consequence on pump activity depends largely on the type of insult,its intensity and duration.Experimental reduction of PMCA expression not only alters the dynamics of cellular Ca2+ handling but also has a myriad of downstream conse-quences on various aspects of cell function,indicating a broad role of these pumps.Age-and oxidation-related down-regulation of the PMCAs may play an important role in compromised neuronal function in the aging brain and its several-fold increased susceptibility to neurodegenerative disorders such as Alzheimer's disease, Parkinson's disease,and stroke.Therapeutic approaches that protect the PMCAs and stabilize[Ca2+]i homeostasis may be capable of slowing and/or preventing neuronal degeneration.The PMCAs are therefore emerging as a new class of drug targets for therapeutic interventions in various chronic degenerative disorders.