In order to balance the temporal-spatial distribution of urban traffic flow, a model is established for combined urban traffic signal control and traffic flow guidance. With consideration of the wide use of fixed sign...In order to balance the temporal-spatial distribution of urban traffic flow, a model is established for combined urban traffic signal control and traffic flow guidance. With consideration of the wide use of fixed signal control at intersections, traffic assignment under traffic flow guidance, and dynamic characteristics of urban traffic management, a tri-level programming model is presented. To reflect the impact of intersection delay on traffic assignment, the lower level model is set as a modified user equilibrium model. The middle level model, which contains several definitional constraints for different phase modes, is built for the traffic signal control optimization. To solve the problem of tide lane management, the upper level model is built up based on nonlinear 0-1 integer programming. A heuristic iterative optimization algorithm(HIOA) is set up to solve the tri-level programming model. The lower level model is solved by method of successive averages(MSA), the middle level model is solved by non-dominated sorting genetic algorithm II(NSGA II), and the upper level model is solved by genetic algorithm(GA). A case study is raised to show the efficiency and applicability of the proposed modelling and computing method.展开更多
In response to the increasing penetration of volatile and uncertain renewable energy,the regional transmission organizations(RTOs)have been recently focusing on enhancing the models of pump storage hydropower(PSH)plan...In response to the increasing penetration of volatile and uncertain renewable energy,the regional transmission organizations(RTOs)have been recently focusing on enhancing the models of pump storage hydropower(PSH)plants,which are one of the key flexibility assets in the day-ahead(DA)and real-time(RT)markets,to further boost their flexibility provision potentials.Inspired by the recent research works that explored the potential benefits of excluding PSHs’cost-related terms from the objective functions of the DA market clearing model,this paper completes a rolling RT market scheme that is compatible with the DA market.Then,with the vision that PSHs could be permitted to submit state-of-charge(SOC)headrooms in the DA market and to release them in the RT market,this paper uncovers that PSHs could increase the total revenues from the two markets by optimizing their SOC headrooms,assisted by the proposed tri-level optimal SOC headroom model.Specifically,in the proposed tri-level model,the middle and lower levels respectively mimic the DA and RT scheduling processes of PSHs,and the upper level determines the optimal headrooms to be submitted to the RTO for maximizing the total revenue from the two markets.Numerical case studies quantify the profitability of the optimal SOC headroom submissions as well as the associated financial risks.展开更多
基金Project(2014BAG01B0403)supported by the High-Tech Research and Development Program of China
文摘In order to balance the temporal-spatial distribution of urban traffic flow, a model is established for combined urban traffic signal control and traffic flow guidance. With consideration of the wide use of fixed signal control at intersections, traffic assignment under traffic flow guidance, and dynamic characteristics of urban traffic management, a tri-level programming model is presented. To reflect the impact of intersection delay on traffic assignment, the lower level model is set as a modified user equilibrium model. The middle level model, which contains several definitional constraints for different phase modes, is built for the traffic signal control optimization. To solve the problem of tide lane management, the upper level model is built up based on nonlinear 0-1 integer programming. A heuristic iterative optimization algorithm(HIOA) is set up to solve the tri-level programming model. The lower level model is solved by method of successive averages(MSA), the middle level model is solved by non-dominated sorting genetic algorithm II(NSGA II), and the upper level model is solved by genetic algorithm(GA). A case study is raised to show the efficiency and applicability of the proposed modelling and computing method.
文摘In response to the increasing penetration of volatile and uncertain renewable energy,the regional transmission organizations(RTOs)have been recently focusing on enhancing the models of pump storage hydropower(PSH)plants,which are one of the key flexibility assets in the day-ahead(DA)and real-time(RT)markets,to further boost their flexibility provision potentials.Inspired by the recent research works that explored the potential benefits of excluding PSHs’cost-related terms from the objective functions of the DA market clearing model,this paper completes a rolling RT market scheme that is compatible with the DA market.Then,with the vision that PSHs could be permitted to submit state-of-charge(SOC)headrooms in the DA market and to release them in the RT market,this paper uncovers that PSHs could increase the total revenues from the two markets by optimizing their SOC headrooms,assisted by the proposed tri-level optimal SOC headroom model.Specifically,in the proposed tri-level model,the middle and lower levels respectively mimic the DA and RT scheduling processes of PSHs,and the upper level determines the optimal headrooms to be submitted to the RTO for maximizing the total revenue from the two markets.Numerical case studies quantify the profitability of the optimal SOC headroom submissions as well as the associated financial risks.