期刊文献+
共找到89篇文章
< 1 2 5 >
每页显示 20 50 100
L_(1)-Smooth SVM with Distributed Adaptive Proximal Stochastic Gradient Descent with Momentum for Fast Brain Tumor Detection
1
作者 Chuandong Qin Yu Cao Liqun Meng 《Computers, Materials & Continua》 SCIE EI 2024年第5期1975-1994,共20页
Brain tumors come in various types,each with distinct characteristics and treatment approaches,making manual detection a time-consuming and potentially ambiguous process.Brain tumor detection is a valuable tool for ga... Brain tumors come in various types,each with distinct characteristics and treatment approaches,making manual detection a time-consuming and potentially ambiguous process.Brain tumor detection is a valuable tool for gaining a deeper understanding of tumors and improving treatment outcomes.Machine learning models have become key players in automating brain tumor detection.Gradient descent methods are the mainstream algorithms for solving machine learning models.In this paper,we propose a novel distributed proximal stochastic gradient descent approach to solve the L_(1)-Smooth Support Vector Machine(SVM)classifier for brain tumor detection.Firstly,the smooth hinge loss is introduced to be used as the loss function of SVM.It avoids the issue of nondifferentiability at the zero point encountered by the traditional hinge loss function during gradient descent optimization.Secondly,the L_(1) regularization method is employed to sparsify features and enhance the robustness of the model.Finally,adaptive proximal stochastic gradient descent(PGD)with momentum,and distributed adaptive PGDwithmomentum(DPGD)are proposed and applied to the L_(1)-Smooth SVM.Distributed computing is crucial in large-scale data analysis,with its value manifested in extending algorithms to distributed clusters,thus enabling more efficient processing ofmassive amounts of data.The DPGD algorithm leverages Spark,enabling full utilization of the computer’s multi-core resources.Due to its sparsity induced by L_(1) regularization on parameters,it exhibits significantly accelerated convergence speed.From the perspective of loss reduction,DPGD converges faster than PGD.The experimental results show that adaptive PGD withmomentumand its variants have achieved cutting-edge accuracy and efficiency in brain tumor detection.Frompre-trained models,both the PGD andDPGD outperform other models,boasting an accuracy of 95.21%. 展开更多
关键词 support vector machine proximal stochastic gradient descent brain tumor detection distributed computing
下载PDF
Proximal SVM在脑功能分类中的应用研究
2
作者 谢松云 程西娜 丁艳 《计算机工程与应用》 CSCD 北大核心 2009年第11期209-211,共3页
为了研究PSVM分类器用于脑功能识别的有效性与优越性,对脑功能识别做出了深入的研究和分析。采用三名受试者在睁眼和闭眼状态下的脑电实测数据,从不同角度深入分析和比较了PSVM分类器与标准SVM分类器的性能,主要衡量指标为识别率和训练... 为了研究PSVM分类器用于脑功能识别的有效性与优越性,对脑功能识别做出了深入的研究和分析。采用三名受试者在睁眼和闭眼状态下的脑电实测数据,从不同角度深入分析和比较了PSVM分类器与标准SVM分类器的性能,主要衡量指标为识别率和训练时间。结果PSVM分类器优于标准SVM分类器之处在于,在保证识别率的同时,计算速度有了显著地提高。并且随着样本维数的增加,PSVM分类器的计算速度并没有下降。PSVM用于脑电信号功能识别是高效率的,这对今后的有实时要求的脑功能分类识别问题具有重要意义。 展开更多
关键词 近邻支持向量机 脑功能 训练时间 正识率
下载PDF
Sparse Proximal Support Vector Machine with a Specialized Interior-Point Method 被引量:2
3
作者 Yan-Qin Bai Zhao-Ying Zhu Wen-Li Yan 《Journal of the Operations Research Society of China》 EI CSCD 2015年第1期1-15,共15页
Support vector machine(SVM)is a widely used method for classification.Proximal support vector machine(PSVM)is an extension of SVM and a promisingmethod to lead to a fast and simple algorithm for generating a classifie... Support vector machine(SVM)is a widely used method for classification.Proximal support vector machine(PSVM)is an extension of SVM and a promisingmethod to lead to a fast and simple algorithm for generating a classifier.Motivated by the fast computational efforts of PSVM and the properties of sparse solution yielded by l1-norm,in this paper,we first propose a PSVM with a cardinality constraint which is eventually relaxed byl1-norm and leads to a trade-offl1−l2 regularized sparse PSVM.Next we convert thisl1−l2 regularized sparse PSVM into an equivalent form of1 regularized least squares(LS)and solve it by a specialized interior-point method proposed by Kim et al.(J SelTop Signal Process 12:1932–4553,2007).Finally,l1−l2 regularized sparse PSVM is illustrated by means of a real-world dataset taken from the University of California,Irvine Machine Learning Repository(UCI Repository).Moreover,we compare the numerical results with the existing models such as generalized eigenvalue proximal SVM(GEPSVM),PSVM,and SVM-Light.The numerical results showthat thel1−l2 regularized sparsePSVMachieves not only better accuracy rate of classification than those of GEPSVM,PSVM,and SVM-Light,but also a sparser classifier compared with the1-PSVM. 展开更多
关键词 proximal support vector machine Classification accuracy Interior-point methods Preconditioned conjugate gradients algorithm
原文传递
Consensus Proximal Support Vector Machine for Classification Problems with Sparse Solutions 被引量:1
4
作者 Yan-Qin Bai Yan-Jun Shen Kai-Ji Shen 《Journal of the Operations Research Society of China》 EI 2014年第1期57-74,共18页
Classification problem is the central problem in machine learning.Support vector machines(SVMs)are supervised learning models with associated learning algorithms and are used for classification in machine learning.In ... Classification problem is the central problem in machine learning.Support vector machines(SVMs)are supervised learning models with associated learning algorithms and are used for classification in machine learning.In this paper,we establish two consensus proximal support vector machines(PSVMs)models,based on methods for binary classification.The first one is to separate the objective functions into individual convex functions by using the number of the sample points of the training set.The constraints contain two types of the equations with global variables and local variables corresponding to the consensus points and sample points,respectively.To get more sparse solutions,the second one is l1–l2 consensus PSVMs in which the objective function contains an■1-norm term and an■2-norm term which is responsible for the good classification performance while■1-norm term plays an important role in finding the sparse solutions.Two consensus PSVMs are solved by the alternating direction method of multipliers.Furthermore,they are implemented by the real-world data taken from the University of California,Irvine Machine Learning Repository(UCI Repository)and are compared with the existed models such as■1-PSVM,■p-PSVM,GEPSVM,PSVM,and SVM-light.Numerical results show that our models outperform others with the classification accuracy and the sparse solutions. 展开更多
关键词 Classification problems support vector machine proximal support vector machine CONSENSUS Alternating direction method of multipliers
原文传递
A Fast Algorithm for Support Vector Clustering
5
作者 吕常魁 姜澄宇 王宁生 《Journal of Southwest Jiaotong University(English Edition)》 2004年第2期136-140,共5页
Support Vector Clustering (SVC) is a kernel-based unsupervised learning clustering method. The main drawback of SVC is its high computational complexity in getting the adjacency matrix describing the connectivity for ... Support Vector Clustering (SVC) is a kernel-based unsupervised learning clustering method. The main drawback of SVC is its high computational complexity in getting the adjacency matrix describing the connectivity for each pairs of points. Based on the proximity graph model [3], the Euclidean distance in Hilbert space is calculated using a Gaussian kernel, which is the right criterion to generate a minimum spanning tree using Kruskal's algorithm. Then the connectivity estimation is lowered by only checking the linkages between the edges that construct the main stem of the MST (Minimum Spanning Tree), in which the non-compatibility degree is originally defined to support the edge selection during linkage estimations. This new approach is experimentally analyzed. The results show that the revised algorithm has a better performance than the proximity graph model with faster speed, optimized clustering quality and strong ability to noise suppression, which makes SVC scalable to large data sets. 展开更多
关键词 support vector machines support vector clustering proximity graph Minimum spanning tree
下载PDF
Analysis of loss functions in support vector machines
6
作者 Huajun WANG Naihua XIU 《Frontiers of Mathematics in China》 CSCD 2023年第6期381-414,共34页
Support vector machines(SVMs)are a kind of important machine learning methods generated by the cross interaction of statistical theory and optimization,and have been extensively applied into text categorization,diseas... Support vector machines(SVMs)are a kind of important machine learning methods generated by the cross interaction of statistical theory and optimization,and have been extensively applied into text categorization,disease diagnosis,face detection and so on.The loss function is the core research content of SVM,and its variational properties play an important role in the analysis of optimality conditions,the design of optimization algorithms,the representation of support vectors and the research of dual problems.This paper summarizes and analyzes the 0-1 loss function and its eighteen popular surrogate loss functions in SVM,and gives three variational properties of these loss functions:subdifferential,proximal operator and Fenchel conjugate,where the nine proximal operators and fifteen Fenchel conjugates are given by this paper. 展开更多
关键词 support vector machines loss function SUBDIFFERENTIAL proximal operator Fenchel conjugate
原文传递
一种基于近似支撑矢量机(PSVM)的交通目标分类方法 被引量:3
7
作者 王怡 王夏黎 +1 位作者 周明全 李丙春 《计算机应用与软件》 CSCD 北大核心 2005年第12期112-114,共3页
本文介绍了支撑向量机的特点,给出了实际应用中传统支撑矢量机存在的问题。为了克服支撑矢量机算法的不足,引入了一种近似支撑矢量机(PSVM)算法,并将此算法用于交通目标的分类识别。实验结果表明此算法比BP神经网络法准确率高,比传统的... 本文介绍了支撑向量机的特点,给出了实际应用中传统支撑矢量机存在的问题。为了克服支撑矢量机算法的不足,引入了一种近似支撑矢量机(PSVM)算法,并将此算法用于交通目标的分类识别。实验结果表明此算法比BP神经网络法准确率高,比传统的SVM法的效率高。 展开更多
关键词 支撑矢量机 近似支撑矢量机 交通目标 分类 神经网络
下载PDF
基于PSVM的主动学习肿块检测方法 被引量:3
8
作者 王颖 高新波 +1 位作者 李洁 王秀美 《计算机研究与发展》 EI CSCD 北大核心 2012年第3期572-578,共7页
肿块区域通常形态各异、差异性较大,并且与正常组织相比没有明显的区别,严重影响了肿块自动检测系统的性能.为了能够有效地提高乳腺X线图像中肿块的检测灵敏度,通过引入包含了样本间相互制约关系的具有成对约束的SVM (PSVM)算法,提出了... 肿块区域通常形态各异、差异性较大,并且与正常组织相比没有明显的区别,严重影响了肿块自动检测系统的性能.为了能够有效地提高乳腺X线图像中肿块的检测灵敏度,通过引入包含了样本间相互制约关系的具有成对约束的SVM (PSVM)算法,提出了一种基于PSVM 的主动学习机制.其中,由系统根据样本的不确定性和相互之间的特征匹配距离,主动选择应该反馈给训练集的成对样本.实验结果表明,这种基于PSVM的主动学习方法,能够充分利用样本所包含的信息,使得检测方法具有更好的推广能力和检测性能. 展开更多
关键词 计算机辅助检测 肿块检测 成对约束 成对约束支持向量机 主动学习
下载PDF
基于PSO算法的模糊PSVM及其在旋转机械故障诊断中的应用 被引量:4
9
作者 于湘涛 卢文秀 褚福磊 《振动与冲击》 EI CSCD 北大核心 2009年第11期183-186,198+212-213,共7页
研究了粒子群优化改的进的模糊线性PSVM在旋转机械故障诊断的应用。常规的PSVM对噪声或野值敏感,模糊PSVM可以很好的解决这种问题;对于非平衡样本,PSVM分类面会偏重于数据点较多的一类,从而降低正确分类性能,通过为不同样本分别设计不... 研究了粒子群优化改的进的模糊线性PSVM在旋转机械故障诊断的应用。常规的PSVM对噪声或野值敏感,模糊PSVM可以很好的解决这种问题;对于非平衡样本,PSVM分类面会偏重于数据点较多的一类,从而降低正确分类性能,通过为不同样本分别设计不同的惩罚因子,提高分类器性能;模糊线性PSVM分类器的惩罚因子采用经典粒子群优化算法进行优化,避免传统方法对初始点和样本的依赖。通过旋转机械故障分类应用实例进行了设计方法的验证,首先对振动信号进行滤波,然后以不同频率频谱的谱峰能量作为模糊线型PSVM分类器的输入特征参数,用于区分旋转机械的5种典型故障,试验结果表明了方法的有效性。 展开更多
关键词 psvm 模糊隶属度函数 粒子群优化 故障诊断
下载PDF
并行PSVM算法及其在入侵检测中的应用(英文) 被引量:2
10
作者 明仲 林朝哲 蔡树彬 《深圳大学学报(理工版)》 EI CAS 北大核心 2010年第3期327-333,共7页
基于并行PSVM(proximal support vector machine)分类法,利用ε-支持向量与原数据集等价的特点,将PSVM和cascade SVM模型高效结合,加速训练入侵数据集.提出一种新的PSVM增量学习方法,它能快捷更新分类器.通过大量基于著名的KDD CUP1999... 基于并行PSVM(proximal support vector machine)分类法,利用ε-支持向量与原数据集等价的特点,将PSVM和cascade SVM模型高效结合,加速训练入侵数据集.提出一种新的PSVM增量学习方法,它能快捷更新分类器.通过大量基于著名的KDD CUP1999数据集实验,研究表明,该算法相对其他SVM方法,在保证较高检测率和较低误报率的同时,其训练时间降低80%,且能通过增量学习新数据集来有效更新分类器. 展开更多
关键词 数据挖掘 并行psvm 入侵检测 增量学习 ε-支持向量 层叠式SVM
下载PDF
一种大数据集上的非线性PSVM训练方法 被引量:1
11
作者 单莘 朱永宣 郭军 《微电子学与计算机》 CSCD 北大核心 2006年第7期20-23,共4页
PSVM作为一种新型SVM方法,避免了求解二次规划问题,具有更快的计算速度,但对于大规模数据集,采用传统方法求解非线性PSVM面临大矩阵求逆的困难。文章基于共轭梯度法结合低秩估计提出了一个大数据集上的非线性PSVM训练方法NPSVM-LD,通过... PSVM作为一种新型SVM方法,避免了求解二次规划问题,具有更快的计算速度,但对于大规模数据集,采用传统方法求解非线性PSVM面临大矩阵求逆的困难。文章基于共轭梯度法结合低秩估计提出了一个大数据集上的非线性PSVM训练方法NPSVM-LD,通过多次迭代的矩阵乘积运算避免了对大矩阵的求逆。在UCI数据集上的实验表明,该方法能够在应用非线性核函数条件下,使PSVM有效处理规模在10000以内的训练集的情况。 展开更多
关键词 支持向量机 psvm 共轭梯度法 低秩估计
下载PDF
一种提高非平衡数据集PSVM分类精度的方法 被引量:1
12
作者 曾凡仔 裘正定 《铁道学报》 EI CAS CSCD 北大核心 2004年第2期124-127,共4页
邻近支撑向量机(PSVM)是一种比较快捷分类器,然而当它用于非平衡样本集时,PSVM过拟合样本点数较多的一类,而低估样本点数较少的错分误差,因此导致了PSVM比较低的整体分类性能。为此,提出了一种改进算法,算法通过在求解分类平面时,只考... 邻近支撑向量机(PSVM)是一种比较快捷分类器,然而当它用于非平衡样本集时,PSVM过拟合样本点数较多的一类,而低估样本点数较少的错分误差,因此导致了PSVM比较低的整体分类性能。为此,提出了一种改进算法,算法通过在求解分类平面时,只考虑错分样本造成误差,同时根据两类的错分样本数自适应的惩罚或奖励错分误差来消除两类样本点数差对整体分类性能的影响。实验结果验证了本文提出的改进算法的有效性。 展开更多
关键词 邻近支撑向量机 拟牛顿算法 非平衡数据集分类 错分样本
下载PDF
PSVM,LSVM和NLSVM三种SVM分类算法的比较 被引量:2
13
作者 刘叶青 谷明涛 《河南科技大学学报(自然科学版)》 CAS 2008年第3期84-87,共4页
支持向量机(SVM)是数据分类的强大工具,本文对三个分类算法进行了比较。这三个算法是最近SVM(PSVM),Lagrangian SVM(LSVM)和有限牛顿LSVM(NLSVM),比较了三个算法给出线性分类器的过程以及算法的速度和精度,提供了用SVM方法分类问题时的... 支持向量机(SVM)是数据分类的强大工具,本文对三个分类算法进行了比较。这三个算法是最近SVM(PSVM),Lagrangian SVM(LSVM)和有限牛顿LSVM(NLSVM),比较了三个算法给出线性分类器的过程以及算法的速度和精度,提供了用SVM方法分类问题时的导向。 展开更多
关键词 数据分类 支持向量机 psvm LSVM NLSVM
下载PDF
基于Vague-Sigmoid核函数的PSVM故障诊断算法研究 被引量:1
14
作者 史岩 李小民 齐晓慧 《信息技术》 2012年第3期13-16,共4页
支持向量机因其相比于传统算法具有良好的分类性能,而广泛地应用于故障诊断研究中。但标准SVM存在训练时间长,占用内存大的不足。近似支持向量机(Proximal Support Vec-tor Machines,PSVM)算法具有训练速度快占用内存少的特点,特别适用... 支持向量机因其相比于传统算法具有良好的分类性能,而广泛地应用于故障诊断研究中。但标准SVM存在训练时间长,占用内存大的不足。近似支持向量机(Proximal Support Vec-tor Machines,PSVM)算法具有训练速度快占用内存少的特点,特别适用于大量数据的故障诊断。但其对于分类超平面附近点的诊断精度略显不足。针对此类问题文中将耗时较少的Vague-Sigmoid核函数应用于PSVM,用以提高其对于在分类面附近样本的分类精度,仿真证明获得了较好的效果。 展开更多
关键词 支持向量机 临近支持向量机 Vague-Sigmoid核函数
下载PDF
PSVM多类分类及其应用 被引量:1
15
作者 程学云 《信息技术》 2009年第4期12-14,共3页
近似支持向量机(PSVM)在支持向量机(SVM)的基础上,变不等式约束为等式约束,只需求解一组线性等式,避免了求解二次规划问题,使得算法更快、更简洁,在两类分类问题中取得较好应用。探讨了3种基于两类PSVM的多类分类方法,在标准数据集上进... 近似支持向量机(PSVM)在支持向量机(SVM)的基础上,变不等式约束为等式约束,只需求解一组线性等式,避免了求解二次规划问题,使得算法更快、更简洁,在两类分类问题中取得较好应用。探讨了3种基于两类PSVM的多类分类方法,在标准数据集上进行了验证,并与标准SVM的结果进行了比较,结论表明3种PSVM多类分类方法能取得较好的分类性能。 展开更多
关键词 多类分类 支持向量机 近似支持向量机
下载PDF
人脸识别中的PSVM方法 被引量:2
16
作者 王晓辉 《韩山师范学院学报》 2007年第3期29-36,共8页
最临近支持向量机Proximal SVM(PSVM)是一种有效的、简单的和快速的近似支持向量机方法,识别效果和标准支持向量机相当,相比之下有较少处理时间.虽然有此优点,它的有效性仅仅是针对维数不高、大样本的数据集,而对于上千维甚至上万维的... 最临近支持向量机Proximal SVM(PSVM)是一种有效的、简单的和快速的近似支持向量机方法,识别效果和标准支持向量机相当,相比之下有较少处理时间.虽然有此优点,它的有效性仅仅是针对维数不高、大样本的数据集,而对于上千维甚至上万维的、小样本的人脸数据库情况没有人给出实验结果.文章把PSVM稍做改变,对四个公开的人脸库进行分类.同时采用几种典型的泛化线性鉴别分析(GLDA)方法,对人脸图像预处理.从识别率和所用的处理时间两方面以及用最近邻及最近特征线分类器进行对比,得出具有较好识别效果和处理时间的方法. 展开更多
关键词 泛化线性鉴别分析 最临近支持向量机 小样本数据集问题 多类分类 人脸识别
下载PDF
基于半监督MPSVM的电力系统暂态稳定评估 被引量:9
17
作者 曲锐 王世荣 辛文龙 《广东电力》 2020年第4期74-81,共8页
半监督学习可借助有标签和部分无标签样本数据来构建电网暂态稳定评估模型,有效利用输入样本数据,可提高电网暂态稳定评估准确率,为此提出基于半监督近似流形支持向量机(manifold proximal support vector machine,MPSVM)的暂态稳定评... 半监督学习可借助有标签和部分无标签样本数据来构建电网暂态稳定评估模型,有效利用输入样本数据,可提高电网暂态稳定评估准确率,为此提出基于半监督近似流形支持向量机(manifold proximal support vector machine,MPSVM)的暂态稳定评估方法。首先,在MPSVM的正则项中引入判别变量,可最大限度捕捉样本数据内部的几何信息,并通过最大距离理论表征电力系统稳定类和不稳定类之间的差异,进而转化为求解特征值问题;然后,采用贝叶斯非线性分层模型确定最优参数,可进一步提高评估准确率;最后,采用IEEE 39标准系统和鞍山电网的仿真分析验证所提评估模型的有效性和准确性。 展开更多
关键词 近似流形支持向量机 半监督分类 暂态稳定评估 贝叶斯非线性分层模型 机器学习
下载PDF
一种求解二阶常微分方程近似解的P-SVM方法
18
作者 姚翊飞 杨晓忠 《中国科技论文在线精品论文》 2023年第4期427-438,共12页
微分方程的计算求解在计算机工程上有重要的理论意义和应用价值。针对传统数值解法计算复杂度高、解的形式离散等问题,本文基于微分方程的回归方程观点与解法,应用统计回归方法求解二阶常微分方程,并给出基于中心支持向量机(proximal su... 微分方程的计算求解在计算机工程上有重要的理论意义和应用价值。针对传统数值解法计算复杂度高、解的形式离散等问题,本文基于微分方程的回归方程观点与解法,应用统计回归方法求解二阶常微分方程,并给出基于中心支持向量机(proximal support vector machine,P-SVM)在常微分方程的初值和边值问题上的近似解求法。通过在目标优化函数中添加偏置项,构建P-SVM回归模型,从而避免大规模求解线性方程组,得到结构简洁的最优解表达式。模型通过最小化训练样本点的均方误差和,在保证精度的同时,有效提高了近似解的计算速度。此外,形式简洁固定的解析解表达式也便于在实际应用中进行定性分析和性质研究。数值试验结果验证了P-SVM方法是一种高效可行的常微分方程求解方法。 展开更多
关键词 计算数学 常微分方程的数值解法 中心支持向量机(P-SVM) 二阶常微分方程 回归模型
下载PDF
中心支持向量机的改进及其在地源热泵系统提高防冻剂传热能力的应用
19
作者 任海秀 《唐山师范学院学报》 2023年第6期43-45,共3页
为有针对性地解决地源热泵系统中防冻剂传热能力的问题,对现有中心支持向量机进行了改进研究,构建了加权中心支持向量机模型。并通过对地源热泵系统常用防冻剂传热能力的分析研究,给出了应用加权中心支持向量机对地源热泵系统混合防冻... 为有针对性地解决地源热泵系统中防冻剂传热能力的问题,对现有中心支持向量机进行了改进研究,构建了加权中心支持向量机模型。并通过对地源热泵系统常用防冻剂传热能力的分析研究,给出了应用加权中心支持向量机对地源热泵系统混合防冻剂传热能力分类的新方法。 展开更多
关键词 地源热泵 传热能力 中心支持向量机
下载PDF
用于处理不平衡样本的改进近似支持向量机新算法 被引量:6
20
作者 刘艳 钟萍 +2 位作者 陈静 宋晓华 何云 《计算机应用》 CSCD 北大核心 2014年第6期1618-1621,共4页
近似支持向量机(PSVM)在处理不平衡样本时,会过拟合样本点数较多的一类,低估样本点数较少的类的错分误差,从而导致整体样本的分类准确率下降。针对该问题,提出一种用于处理不平衡样本的改进的PSVM新算法。新算法不仅给正、负类样本赋予... 近似支持向量机(PSVM)在处理不平衡样本时,会过拟合样本点数较多的一类,低估样本点数较少的类的错分误差,从而导致整体样本的分类准确率下降。针对该问题,提出一种用于处理不平衡样本的改进的PSVM新算法。新算法不仅给正、负类样本赋予不同的惩罚因子,而且在约束条件中新增参数,使得分类面更具灵活性。该算法先对训练集训练获得最优参数,然后再对测试集进行训练获得分类超平面,最后输出分类结果。UCI数据库中9组数据集的实验结果表明:新算法提高了样本的分类准确率,在线性的情况下平均提高了2.19个百分点,在非线性的情况下平均提高了3.14个百分点,有效地提高了模型的泛化能力。 展开更多
关键词 近似支持向量机 不平衡样本 参数 惩罚因子 模型改进
下载PDF
上一页 1 2 5 下一页 到第
使用帮助 返回顶部