We develop a theory of downward sets for a class of normed ordered spaces. We study best approximation in a normed ordered space X by elements of downward sets, and give necessary and sufficient conditions for any ele...We develop a theory of downward sets for a class of normed ordered spaces. We study best approximation in a normed ordered space X by elements of downward sets, and give necessary and sufficient conditions for any element of best approximation by a closed downward subset of X. We also characterize strictly downward subsets of X, and prove that a downward subset of X is strictly downward if and only if each its boundary point is Chebyshev. The results obtained are used for examination of some Chebyshev pairs (W,x), where ∈ X and W is a closed downward subset of X展开更多
Let (X,d) be a real metric linear space, with translation-invariant metric d and C a linear subspace of X. In this paper we use functionals in the Lipschitz dual of X to characterize those elements of G which are best...Let (X,d) be a real metric linear space, with translation-invariant metric d and C a linear subspace of X. In this paper we use functionals in the Lipschitz dual of X to characterize those elements of G which are best approximations to elements of X.We also give simultaneous characterization of elements of best approximation and also consider elements of ε-approximation.展开更多
文摘We develop a theory of downward sets for a class of normed ordered spaces. We study best approximation in a normed ordered space X by elements of downward sets, and give necessary and sufficient conditions for any element of best approximation by a closed downward subset of X. We also characterize strictly downward subsets of X, and prove that a downward subset of X is strictly downward if and only if each its boundary point is Chebyshev. The results obtained are used for examination of some Chebyshev pairs (W,x), where ∈ X and W is a closed downward subset of X
文摘Let (X,d) be a real metric linear space, with translation-invariant metric d and C a linear subspace of X. In this paper we use functionals in the Lipschitz dual of X to characterize those elements of G which are best approximations to elements of X.We also give simultaneous characterization of elements of best approximation and also consider elements of ε-approximation.