Several new stripe rust pathogen races emerged in the wheat growing regions of China in recent years.These races were virulent to most of the designated wheat seedling resistance genes.Thus,it is necessary and worthwh...Several new stripe rust pathogen races emerged in the wheat growing regions of China in recent years.These races were virulent to most of the designated wheat seedling resistance genes.Thus,it is necessary and worthwhile to identify new valuable resistant materials for the sake of diversifying resistant sources,pyramiding different resistance genes and achieving durable resistance.Here,we identified the resistance gene,temporarily designated as YrH9017,in wheat-Psathyrostachys huashanica introgression line H9017-14-16-5-3.A total of 146 F2 plants and their derived F2:3 families in a cross of Mingxian 169 and H9017-14-16-5-3 were used to evaluate seedling stripe rust response and as a mapping population.Finally,we constructed a genetic map including eight simple sequence repeat(SSR) markers and expressed sequence tag(EST) markers.YrH9017 was located on the long arm of chromosome 2A and closely linked with two EST-sequence tagged site(EST-STS) markers BG604577 and BE471201 at 1.3 and 1.8 cM distance,respectively.The two closest markers could be used for marker-assisted selection of YrH9017 in breeding.展开更多
Stripe rust (yellow rust), caused by Puccinia striiformis f. sp. tritici (Pst), is one of the most devastating diseases of wheat throughout the world. H9020-1-6-8-3 is a translocation line originally developed fro...Stripe rust (yellow rust), caused by Puccinia striiformis f. sp. tritici (Pst), is one of the most devastating diseases of wheat throughout the world. H9020-1-6-8-3 is a translocation line originally developed from interspeciifc hybridization between wheat line 7182 and Psathyrostachys huashanica Keng and is resistant to most Pst races in China. To identify the resistance gene(s) in the translocation line, H9020-1-6-8-3 was crossed with susceptible cultivar Mingxian 169, and seedlings of the parents, F1, F2, F3, and BC1 generations were tested with prevalent Chinese Pst race CYR32 under controlled greenhouse conditions. The results indicated that there is a single dominant gene, temporarily designated as YrH9020a, conferring resistance to CYR32. The resistance gene was mapped by the F2 population from Mingxian 169/H9020-1-6-8-3. It was linked to six microsatellite markers, including Xbarc196, Xbarc202, Xbarc96, Xgpw4372, Xbarc21, and Xgdm141, lfanked by Xbarc96 and Xbarc202 with at 4.5 and 8.3 cM, respectively. Based on the chromosomal locations of these markers and the test of Chinese Spring (CS) nullitetrasomic and ditelosomic lines, the gene was assigned to chromosome 6D. According to the origin and the chromosomal location, YrH9020a might be a new resistance gene to stripe rust. The lfanking markers linked to YrH9020a could be useful for marker-assisted selection in breeding programs.展开更多
Psathyrostachys huashanica Keng is endemic to China and only distributed in Huashan Mountain in Shaanxi Province, China. In this study, 15 P. huashanica populations consisting of 450 individuals sampled across their m...Psathyrostachys huashanica Keng is endemic to China and only distributed in Huashan Mountain in Shaanxi Province, China. In this study, 15 P. huashanica populations consisting of 450 individuals sampled across their main distribution were investigated by using the simple sequence repeats (SSRs) markers. A total of 184 alleles were detected on 24 SSR loci, and the number of alleles on each locus ranged from 2 to15, with an average of 7.667. The total gene diversity (HT= 0.683) and the coefficient of population differentiation (GST = 0.125) showed that P. huashanica had a relatively high level of genetic variation, and the genetic variation was mainly distributed within the populations. The gene flow among the populations of P. huashanica (Nm = 1.750) was much less than that of the common anemophytes (Nm = 5.24). Correlation analysis demonstrated that the number of alleles as well as genetic diversity of the five populations of Huangpu valley decreased along with the increase of altitudes, but the correlation was not significant. Implications of these results for future P. huashanica collection, evaluation and conservation were discussed.展开更多
Psathyrostachys huashanica Keng(2n=2x=14,NsNs)is regarded as a valuable wild relative species for common wheat cultivar improvement because of its abundant beneficial agronomic traits.However,although the development ...Psathyrostachys huashanica Keng(2n=2x=14,NsNs)is regarded as a valuable wild relative species for common wheat cultivar improvement because of its abundant beneficial agronomic traits.However,although the development of many wheat–P.huashanica-derived lines provides a germplasm base for the transfer of excellent traits,the lag in the identification of P.huashanica chromosomes in the wheat background has limited the study of these lines.In this study,three novel nondenaturing fluorescence in situ hybridization(ND-FISH)-positive oligo probes were developed.Among them,HS-TZ3 and HS-TZ4 could specifically hybridize with P.huashanica chromosomes,mainly in the telomere area,and HS-CHTZ5 could hybridize with the chromosomal centromere area.We sequentially constructed a P.huashanica FISH karyotype and idiogram that helped identify the homologous groups of introduced P.huashanica chromosomes.In detail,1Ns and 2Ns had opposite signals on the short and long arms,3Ns,4Ns,and 7Ns had superposed two-color signals,5Ns and 6Ns had fluorescent signals only on their short arms,and 7Ns had signals on the intercalary of the long arm.In addition,we evaluated different ways to identify alien introgression lines by using low-density single nucleotide polymorphism(SNP)arrays and recommended the SNP homozygosity rate in each chromosome as a statistical pattern.The 15K SNP array is widely applicable for addition,substitution,and translocation lines,and the 40K SNP array is the most accurate for recognizing transposed intervals between wheat and alien chromosomes.Our research provided convenient methods to distinguish the homologous group of P.huashanica chromosomes in a common wheat background based on ND-FISH and SNP arrays,which is of great significance for efficiently identifying wheat–P.huashanica-derived lines and the further application of Ns chromosomes.展开更多
Take-all is a devastating soil-borne disease of wheat(Triticum aestivum L.).Cultivating resistant line is an important measure to control this disease.Psathyrostachys huashanica Keng is a valuable germplasm resource w...Take-all is a devastating soil-borne disease of wheat(Triticum aestivum L.).Cultivating resistant line is an important measure to control this disease.Psathyrostachys huashanica Keng is a valuable germplasm resource with high resistance to take-all.This study reported on a wheat-/R huashanica introgression line H148 with improved take-all resistance compared with its susceptible parent 7182.To elucidate the genetic mechanism of resistance in H148,the F_(2)genetic segregating population of H148×XN585 was constructed.The mixed genetic model analysis showed that the take-all resistance was controlled by two major genes with additive,dominant and epistasis effects.Bulked segregant analysis combined with wheat axiom 660K genotyping array analysis showed the polymorphic SNPs with take-all resistance from P.huashanica alien introgression were mainly distributed on the chromosome 2A.Genotyping of the F_(2)population using the KASP marker mapped a major QTL in an interval of 68.8-70.1 Mb on 2AS.Sixty-two genes were found in the target interval of the Chinese Spring reference genome sequence.According to the functional annotation of genes,two protein genes that can improve the systematic resistance of plant roots were predicted as candidate genes.The development of wheat-P.huashanica introgression line H148 and the resistant QTL mapping information are expected to provide some valuable references for the fine mapping of disease-resistance gene and development of take-all resistant varieties through molecular marker-assisted selection.展开更多
Particular attention has been paid to the donor-recipient method in the work of plant somatic hybridization. γ-or X-ray was generally used to irradiate one of the parents(donor) in order to obtain hybrids or asymmetr...Particular attention has been paid to the donor-recipient method in the work of plant somatic hybridization. γ-or X-ray was generally used to irradiate one of the parents(donor) in order to obtain hybrids or asymmetric nuclear hybrids. But no application of ultraviolet rays (UV) has been reported yet. In the field of somatic hybridization of cereals,展开更多
Using genomic in-situ hybridization (GISH) technique, 7 translocation-addition lines, 6 transloca-tion and translocation-addition lines, 2 ditelosomic addition lines and 1 translocation line were identified from Triti...Using genomic in-situ hybridization (GISH) technique, 7 translocation-addition lines, 6 transloca-tion and translocation-addition lines, 2 ditelosomic addition lines and 1 translocation line were identified from Triticum aestivum L.-Psathyrostachys juncea (Fisch. ) Nevski intergeneric hybrids, of which translocation-addition and translocation and translocation-addition lines were not found in other reports. No substitutions and disomic additions were detected in the hybrids and breakages occurred in all P. juncea chromosomes studied. Results have shown that the improved GISH technique is a rapid and economical method for use in this field.展开更多
Psathyrostachys huashanica Keng is a perennial grass and belongs to genus Psathyrostachys under Triticeae.sathyrostachys is found in the center of Middle Asia and the Caucasus Mountain,while P.huashanica,a species end...Psathyrostachys huashanica Keng is a perennial grass and belongs to genus Psathyrostachys under Triticeae.sathyrostachys is found in the center of Middle Asia and the Caucasus Mountain,while P.huashanica,a species endemic to China,is only located in Mt.Hua in the Shaanxi province,China.At present,the population of this species is decreasing,and reaching the edge of extinction.Due to the limitation in distribution and the importance as breeding material for germplasm storage,it has been considered as first class among the national protected rare plants.For this reason,the present study is significant in probing plant flora,origin and evolu-tion of Triticeae,and crop breeding.Randomly amplified polymorphic DNA(RAPD)markers were used to analyze the genetic structure and differentiation of P.huashanica popula-tions sampled in three valleys(Huangpu,Xian,and Huashan Valleys)in Mt.Hua.One hundred and twenty-two RAPD fragments were obtained in all 266 individuals with 20 prim-ers with a mean of 6.1(2-10)fragments per primer.The percentage of polymorphic loci(PPB)was 60.66%in Huangpu Valley,90.98%in Xian Valley,95.08%in Huashan Valley,and the total PPB was 95.08%,which indicated a highly genetic variability of P.huashanica.The Shannon’s Information index and GST were 0.3306 and 0.3263,respectively,indicating that there were more genetic variations within the subpopulations than those among the subpopulations.The gene flow among the subpopulations of P.huashanica(Nm=1.0322)was much less than that of the common ane-mophytes(Nm=5.24).Mean genetic distance is 0.1571(range:0.0022-0.2901).The highest value of genetic distance was found between the subpopulation(hp1)of Huangpu Valley and the highest altitude subpopulation(h8)of Huashan Valley.Correlation analysis detected significant correlation between genetic distance and vertical distance of altitude.Clustering analysis and principal coordinate analysis revealed the genetic differentiation among the populations of P.huashanica.Differentiation mainly occurred between the higher altitude subpopulations and the lower altitude sub-populations,suggesting that altitude might be the major factor that restricted the gene flow between different altitude subpopulations and resulted in differentiation of subpopulations.展开更多
基金funded by the National Natural Science Foundation of China (31660513,31501620 and 31701911)the Provincial Natural Science Foundation of Qinghai,China (2017-ZJ-793)
文摘Several new stripe rust pathogen races emerged in the wheat growing regions of China in recent years.These races were virulent to most of the designated wheat seedling resistance genes.Thus,it is necessary and worthwhile to identify new valuable resistant materials for the sake of diversifying resistant sources,pyramiding different resistance genes and achieving durable resistance.Here,we identified the resistance gene,temporarily designated as YrH9017,in wheat-Psathyrostachys huashanica introgression line H9017-14-16-5-3.A total of 146 F2 plants and their derived F2:3 families in a cross of Mingxian 169 and H9017-14-16-5-3 were used to evaluate seedling stripe rust response and as a mapping population.Finally,we constructed a genetic map including eight simple sequence repeat(SSR) markers and expressed sequence tag(EST) markers.YrH9017 was located on the long arm of chromosome 2A and closely linked with two EST-sequence tagged site(EST-STS) markers BG604577 and BE471201 at 1.3 and 1.8 cM distance,respectively.The two closest markers could be used for marker-assisted selection of YrH9017 in breeding.
基金supported by the Programme of Introducing Talents of Discipline to Universities, Ministry of Education, China (111 Project, B07049)the National Basic Research Program of China (973 Program, 2013CB127700)+2 种基金the Science and Technology Co-ordinating Innovative Engineering Project of Shaanxi Province, China (2012KTCL02-10)the National Natural Science Foundation of China (30771397)the China Postdoctoral Science Foundation (2012M512034)
文摘Stripe rust (yellow rust), caused by Puccinia striiformis f. sp. tritici (Pst), is one of the most devastating diseases of wheat throughout the world. H9020-1-6-8-3 is a translocation line originally developed from interspeciifc hybridization between wheat line 7182 and Psathyrostachys huashanica Keng and is resistant to most Pst races in China. To identify the resistance gene(s) in the translocation line, H9020-1-6-8-3 was crossed with susceptible cultivar Mingxian 169, and seedlings of the parents, F1, F2, F3, and BC1 generations were tested with prevalent Chinese Pst race CYR32 under controlled greenhouse conditions. The results indicated that there is a single dominant gene, temporarily designated as YrH9020a, conferring resistance to CYR32. The resistance gene was mapped by the F2 population from Mingxian 169/H9020-1-6-8-3. It was linked to six microsatellite markers, including Xbarc196, Xbarc202, Xbarc96, Xgpw4372, Xbarc21, and Xgdm141, lfanked by Xbarc96 and Xbarc202 with at 4.5 and 8.3 cM, respectively. Based on the chromosomal locations of these markers and the test of Chinese Spring (CS) nullitetrasomic and ditelosomic lines, the gene was assigned to chromosome 6D. According to the origin and the chromosomal location, YrH9020a might be a new resistance gene to stripe rust. The lfanking markers linked to YrH9020a could be useful for marker-assisted selection in breeding programs.
基金support wasprovided by the Ministry of Science and Technology of China (2004DIB3J090)
文摘Psathyrostachys huashanica Keng is endemic to China and only distributed in Huashan Mountain in Shaanxi Province, China. In this study, 15 P. huashanica populations consisting of 450 individuals sampled across their main distribution were investigated by using the simple sequence repeats (SSRs) markers. A total of 184 alleles were detected on 24 SSR loci, and the number of alleles on each locus ranged from 2 to15, with an average of 7.667. The total gene diversity (HT= 0.683) and the coefficient of population differentiation (GST = 0.125) showed that P. huashanica had a relatively high level of genetic variation, and the genetic variation was mainly distributed within the populations. The gene flow among the populations of P. huashanica (Nm = 1.750) was much less than that of the common anemophytes (Nm = 5.24). Correlation analysis demonstrated that the number of alleles as well as genetic diversity of the five populations of Huangpu valley decreased along with the increase of altitudes, but the correlation was not significant. Implications of these results for future P. huashanica collection, evaluation and conservation were discussed.
基金the National Natural Science Foundation of China(31501301)the National Key Research and Development Program of China(2018YFD0100904)+1 种基金the Natural Science Foundation of Henan Province,China(162300410077)the International Cooperation Project of Henan Province,China(172102410052)。
文摘Psathyrostachys huashanica Keng(2n=2x=14,NsNs)is regarded as a valuable wild relative species for common wheat cultivar improvement because of its abundant beneficial agronomic traits.However,although the development of many wheat–P.huashanica-derived lines provides a germplasm base for the transfer of excellent traits,the lag in the identification of P.huashanica chromosomes in the wheat background has limited the study of these lines.In this study,three novel nondenaturing fluorescence in situ hybridization(ND-FISH)-positive oligo probes were developed.Among them,HS-TZ3 and HS-TZ4 could specifically hybridize with P.huashanica chromosomes,mainly in the telomere area,and HS-CHTZ5 could hybridize with the chromosomal centromere area.We sequentially constructed a P.huashanica FISH karyotype and idiogram that helped identify the homologous groups of introduced P.huashanica chromosomes.In detail,1Ns and 2Ns had opposite signals on the short and long arms,3Ns,4Ns,and 7Ns had superposed two-color signals,5Ns and 6Ns had fluorescent signals only on their short arms,and 7Ns had signals on the intercalary of the long arm.In addition,we evaluated different ways to identify alien introgression lines by using low-density single nucleotide polymorphism(SNP)arrays and recommended the SNP homozygosity rate in each chromosome as a statistical pattern.The 15K SNP array is widely applicable for addition,substitution,and translocation lines,and the 40K SNP array is the most accurate for recognizing transposed intervals between wheat and alien chromosomes.Our research provided convenient methods to distinguish the homologous group of P.huashanica chromosomes in a common wheat background based on ND-FISH and SNP arrays,which is of great significance for efficiently identifying wheat–P.huashanica-derived lines and the further application of Ns chromosomes.
基金the National Natural Science Foundation of China(31571650 and 31771785)the National Key Research and Development Program of China(2017YFD0100701)+1 种基金the Key Projects in Shaanxi Provincial Agricultural Field,China(2018ZDXM-NY-006)the Key Research and Development Project of Shaanxi Province,China(2019ZDLNY04-05).
文摘Take-all is a devastating soil-borne disease of wheat(Triticum aestivum L.).Cultivating resistant line is an important measure to control this disease.Psathyrostachys huashanica Keng is a valuable germplasm resource with high resistance to take-all.This study reported on a wheat-/R huashanica introgression line H148 with improved take-all resistance compared with its susceptible parent 7182.To elucidate the genetic mechanism of resistance in H148,the F_(2)genetic segregating population of H148×XN585 was constructed.The mixed genetic model analysis showed that the take-all resistance was controlled by two major genes with additive,dominant and epistasis effects.Bulked segregant analysis combined with wheat axiom 660K genotyping array analysis showed the polymorphic SNPs with take-all resistance from P.huashanica alien introgression were mainly distributed on the chromosome 2A.Genotyping of the F_(2)population using the KASP marker mapped a major QTL in an interval of 68.8-70.1 Mb on 2AS.Sixty-two genes were found in the target interval of the Chinese Spring reference genome sequence.According to the functional annotation of genes,two protein genes that can improve the systematic resistance of plant roots were predicted as candidate genes.The development of wheat-P.huashanica introgression line H148 and the resistant QTL mapping information are expected to provide some valuable references for the fine mapping of disease-resistance gene and development of take-all resistant varieties through molecular marker-assisted selection.
基金Project supported by the National Natural Science Foundation of Chinathe Doctor Place Foundation of State Education Commission.
文摘Particular attention has been paid to the donor-recipient method in the work of plant somatic hybridization. γ-or X-ray was generally used to irradiate one of the parents(donor) in order to obtain hybrids or asymmetric nuclear hybrids. But no application of ultraviolet rays (UV) has been reported yet. In the field of somatic hybridization of cereals,
文摘Using genomic in-situ hybridization (GISH) technique, 7 translocation-addition lines, 6 transloca-tion and translocation-addition lines, 2 ditelosomic addition lines and 1 translocation line were identified from Triticum aestivum L.-Psathyrostachys juncea (Fisch. ) Nevski intergeneric hybrids, of which translocation-addition and translocation and translocation-addition lines were not found in other reports. No substitutions and disomic additions were detected in the hybrids and breakages occurred in all P. juncea chromosomes studied. Results have shown that the improved GISH technique is a rapid and economical method for use in this field.
基金This research was supported by the National Natural Science Foundation of China(No.39770087)Shaanxi Natural Science Foundation(No.2001SM20).
文摘Psathyrostachys huashanica Keng is a perennial grass and belongs to genus Psathyrostachys under Triticeae.sathyrostachys is found in the center of Middle Asia and the Caucasus Mountain,while P.huashanica,a species endemic to China,is only located in Mt.Hua in the Shaanxi province,China.At present,the population of this species is decreasing,and reaching the edge of extinction.Due to the limitation in distribution and the importance as breeding material for germplasm storage,it has been considered as first class among the national protected rare plants.For this reason,the present study is significant in probing plant flora,origin and evolu-tion of Triticeae,and crop breeding.Randomly amplified polymorphic DNA(RAPD)markers were used to analyze the genetic structure and differentiation of P.huashanica popula-tions sampled in three valleys(Huangpu,Xian,and Huashan Valleys)in Mt.Hua.One hundred and twenty-two RAPD fragments were obtained in all 266 individuals with 20 prim-ers with a mean of 6.1(2-10)fragments per primer.The percentage of polymorphic loci(PPB)was 60.66%in Huangpu Valley,90.98%in Xian Valley,95.08%in Huashan Valley,and the total PPB was 95.08%,which indicated a highly genetic variability of P.huashanica.The Shannon’s Information index and GST were 0.3306 and 0.3263,respectively,indicating that there were more genetic variations within the subpopulations than those among the subpopulations.The gene flow among the subpopulations of P.huashanica(Nm=1.0322)was much less than that of the common ane-mophytes(Nm=5.24).Mean genetic distance is 0.1571(range:0.0022-0.2901).The highest value of genetic distance was found between the subpopulation(hp1)of Huangpu Valley and the highest altitude subpopulation(h8)of Huashan Valley.Correlation analysis detected significant correlation between genetic distance and vertical distance of altitude.Clustering analysis and principal coordinate analysis revealed the genetic differentiation among the populations of P.huashanica.Differentiation mainly occurred between the higher altitude subpopulations and the lower altitude sub-populations,suggesting that altitude might be the major factor that restricted the gene flow between different altitude subpopulations and resulted in differentiation of subpopulations.