This paper,the kinetic equation,traction force,and braking force for railway trains are reviewed.In addition,the driving characteristics are interpreted as to how the power of the electric vehicle relates to the weigh...This paper,the kinetic equation,traction force,and braking force for railway trains are reviewed.In addition,the driving characteristics are interpreted as to how the power of the electric vehicle relates to the weight,speed,track curve,and track gradient of the electric vehicle.The driving characteristics of these trains are analyzed through PSCAD/EMTDC(power systems computer aided design/electromagnetic transients including DC)modeling.展开更多
基于光伏模块直流物理模型,在PSCAD仿真环境下,开发了光伏阵列仿真模型。此外,考虑到太阳能的波动性和随机性对光伏阵列的影响,开发了最大功率点跟踪(Maximum Power Point Tracking,MPPT)控制器仿真模型,保证光伏阵列在任何当前日照下...基于光伏模块直流物理模型,在PSCAD仿真环境下,开发了光伏阵列仿真模型。此外,考虑到太阳能的波动性和随机性对光伏阵列的影响,开发了最大功率点跟踪(Maximum Power Point Tracking,MPPT)控制器仿真模型,保证光伏阵列在任何当前日照下不断获得最大功率输出。仿真结果表明,搭建的仿真模型能够准确的反映实际物理装置的特性与功能,可以用于光伏发电并网及储能方面的仿真研究。展开更多
基金supported by the Korea Institute of Energy Technology Evaluation and Planning(KETEP)and the Ministry of Trade,Industry&Energy(MOTIE)of the Republic of Korea(No.20225500000110).
文摘This paper,the kinetic equation,traction force,and braking force for railway trains are reviewed.In addition,the driving characteristics are interpreted as to how the power of the electric vehicle relates to the weight,speed,track curve,and track gradient of the electric vehicle.The driving characteristics of these trains are analyzed through PSCAD/EMTDC(power systems computer aided design/electromagnetic transients including DC)modeling.
文摘基于光伏模块直流物理模型,在PSCAD仿真环境下,开发了光伏阵列仿真模型。此外,考虑到太阳能的波动性和随机性对光伏阵列的影响,开发了最大功率点跟踪(Maximum Power Point Tracking,MPPT)控制器仿真模型,保证光伏阵列在任何当前日照下不断获得最大功率输出。仿真结果表明,搭建的仿真模型能够准确的反映实际物理装置的特性与功能,可以用于光伏发电并网及储能方面的仿真研究。