This paper provides a nonlinear pseudo-hyperbolic partial differential equation with non-local conditions.Despite the importance of this problem,the exact solution to this problem is rare in the literature.Therefore,t...This paper provides a nonlinear pseudo-hyperbolic partial differential equation with non-local conditions.Despite the importance of this problem,the exact solution to this problem is rare in the literature.Therefore,the Laplace-Adomian Decomposition Method(LADM)is used to provide a new approach to solving this problem.Additionally,we give a comparison between the exact and approximate solutions at various points with absolute error.The obtained result showed that the proposed method is effective and accurate for this problem and can be used for many other evolution of nonlinear equations in mathematical physics.展开更多
A local pseudo arc-length method(LPALM)for solving hyperbolic conservation laws is presented in this paper.The key idea of this method comes from the original arc-length method,through which the critical points are ...A local pseudo arc-length method(LPALM)for solving hyperbolic conservation laws is presented in this paper.The key idea of this method comes from the original arc-length method,through which the critical points are bypassed by transforming the computational space.The method is based on local changes of physical variables to choose the discontinuous stencil and introduce the pseudo arc-length parameter,and then transform the governing equations from physical space to arc-length space.In order to solve these equations in arc-length coordinate,it is necessary to combine the velocity of mesh points in the moving mesh method,and then convert the physical variable in arclength space back to physical space.Numerical examples have proved the effectiveness and generality of the new approach for linear equation,nonlinear equation and system of equations with discontinuous initial values.Non-oscillation solution can be obtained by adjusting the parameter and the mesh refinement number for problems containing both shock and rarefaction waves.展开更多
This paper considers the initial boundary value problems with three types of the boundary conditions for nonlinear pseudo-hyperbolic equations of generalized nerve conduction type, using foe eigenfunction method, ...This paper considers the initial boundary value problems with three types of the boundary conditions for nonlinear pseudo-hyperbolic equations of generalized nerve conduction type, using foe eigenfunction method, the conditions for which the solutions blow-up and die-out in the finile time are got.展开更多
Based on H1-Galerkin mixed finite element method with nonconforming quasi-Wilson element, a numerical approximate scheme is established for pseudo-hyperbolic equations under arbitrary quadrilateral meshes. The corresp...Based on H1-Galerkin mixed finite element method with nonconforming quasi-Wilson element, a numerical approximate scheme is established for pseudo-hyperbolic equations under arbitrary quadrilateral meshes. The corresponding optimal order error estimate is derived by the interpolation technique instead of the generalized elliptic projection which is necessary for classical error estimates of finite element analysis.展开更多
In this paper, a new splitting positive definite nonconforming mixed finite element method is proposed for pseudo-hyperbolic equations, in which a quasi-Wilson quadrilateral element is used for the flux p, and the bil...In this paper, a new splitting positive definite nonconforming mixed finite element method is proposed for pseudo-hyperbolic equations, in which a quasi-Wilson quadrilateral element is used for the flux p, and the bilinear element is used for u. Superconvergence results in ||·||div,h norm for p and optimal error estimates in L2 norm for u are derived for both semi-discrete and fully discrete schemes under almost uniform meshes.展开更多
We introduce a new notion of pseudo-anti commuting Ricci tensor for real hypersurfaces in the noncompact complex hyperbolic quadric Q^(m?)= SO_2~0,_m/SO_2SO_m and give a complete classi?cation of these hypersurfaces.
AD (Alternating direction) Galerkin schemes for d-dimensional nonlinear pseudo-hyperbolic equations are studied. By using patch approximation technique, AD procedure is realized, and calculation work is simplified. By...AD (Alternating direction) Galerkin schemes for d-dimensional nonlinear pseudo-hyperbolic equations are studied. By using patch approximation technique, AD procedure is realized, and calculation work is simplified. By using Galerkin approach, highly computational accuracy is kept. By using various priori estimate techniques for differential equations, difficulty coming from non-linearity is treated, and optimal H1 and L2 convergence properties are demonstrated. Moreover, although all the existed AD Galerkin schemes using patch approximation are limited to have only one order accuracy in time increment, yet the schemes formulated in this paper have second order accuracy in it. This implies an essential advancement in AD Galerkin analysis.展开更多
文摘This paper provides a nonlinear pseudo-hyperbolic partial differential equation with non-local conditions.Despite the importance of this problem,the exact solution to this problem is rare in the literature.Therefore,the Laplace-Adomian Decomposition Method(LADM)is used to provide a new approach to solving this problem.Additionally,we give a comparison between the exact and approximate solutions at various points with absolute error.The obtained result showed that the proposed method is effective and accurate for this problem and can be used for many other evolution of nonlinear equations in mathematical physics.
基金supported by the National Natural Science Foundation of China(11390363 and 11172041)Beijing Higher Education Young Elite Teacher Project(YETP1190)
文摘A local pseudo arc-length method(LPALM)for solving hyperbolic conservation laws is presented in this paper.The key idea of this method comes from the original arc-length method,through which the critical points are bypassed by transforming the computational space.The method is based on local changes of physical variables to choose the discontinuous stencil and introduce the pseudo arc-length parameter,and then transform the governing equations from physical space to arc-length space.In order to solve these equations in arc-length coordinate,it is necessary to combine the velocity of mesh points in the moving mesh method,and then convert the physical variable in arclength space back to physical space.Numerical examples have proved the effectiveness and generality of the new approach for linear equation,nonlinear equation and system of equations with discontinuous initial values.Non-oscillation solution can be obtained by adjusting the parameter and the mesh refinement number for problems containing both shock and rarefaction waves.
文摘This paper considers the initial boundary value problems with three types of the boundary conditions for nonlinear pseudo-hyperbolic equations of generalized nerve conduction type, using foe eigenfunction method, the conditions for which the solutions blow-up and die-out in the finile time are got.
文摘Based on H1-Galerkin mixed finite element method with nonconforming quasi-Wilson element, a numerical approximate scheme is established for pseudo-hyperbolic equations under arbitrary quadrilateral meshes. The corresponding optimal order error estimate is derived by the interpolation technique instead of the generalized elliptic projection which is necessary for classical error estimates of finite element analysis.
基金Supported by the National Natural Science Foundation of China(No.10971203,11271340,11101384)the Specialized Research Fund for the Doctoral Program of Higher Education(No.20094101110006)
文摘In this paper, a new splitting positive definite nonconforming mixed finite element method is proposed for pseudo-hyperbolic equations, in which a quasi-Wilson quadrilateral element is used for the flux p, and the bilinear element is used for u. Superconvergence results in ||·||div,h norm for p and optimal error estimates in L2 norm for u are derived for both semi-discrete and fully discrete schemes under almost uniform meshes.
基金supported by National Research Foundation of Korea (Grant No. NRF2015-R1A2A1A-01002459)
文摘We introduce a new notion of pseudo-anti commuting Ricci tensor for real hypersurfaces in the noncompact complex hyperbolic quadric Q^(m?)= SO_2~0,_m/SO_2SO_m and give a complete classi?cation of these hypersurfaces.
基金Supported by China National Key Program for Developing Basic Sciences (G1999032801) Mathematical Tianyuan Foundation (10226026) and NNSF of China (19932010).
文摘AD (Alternating direction) Galerkin schemes for d-dimensional nonlinear pseudo-hyperbolic equations are studied. By using patch approximation technique, AD procedure is realized, and calculation work is simplified. By using Galerkin approach, highly computational accuracy is kept. By using various priori estimate techniques for differential equations, difficulty coming from non-linearity is treated, and optimal H1 and L2 convergence properties are demonstrated. Moreover, although all the existed AD Galerkin schemes using patch approximation are limited to have only one order accuracy in time increment, yet the schemes formulated in this paper have second order accuracy in it. This implies an essential advancement in AD Galerkin analysis.
基金Supported by the National Natural Science Foundation of China(1067118410971203)the National Natural Science Foundation of the Education Department of Henan Province(2010A110018)