Target detection is an important research content in the radar field.At present,efforts are being made to optimize the precision of detection information.In this paper,we use the high pulse repetition frequency(HPRF)t...Target detection is an important research content in the radar field.At present,efforts are being made to optimize the precision of detection information.In this paper,we use the high pulse repetition frequency(HPRF)transmission method and orthogonal biphase coded signals in each pulse to avoid velocity ambiguity and range ambiguity of radar detection.In addition,We also apply Walsh matrix and genetic algorithm(GA)to generate satisfying orthogonal biphase coded signals with low auto-correlation sidelobe peak and cross-correlation peak,which make the results more accurate.In a radar receiver,data rearrangement of echo signals is performed,and then pulse compression and moving target detection(MTD)are utilized to get the final velocity and range information of a target without velocity ambiguity and range ambiguity.Besides,a small transmitting pulse time width is adopted to reduce the working blind area,and two different high pulse repetition frequencies(HPRFs)are adopted to solve the problem of range eclipse.Simulation results finally prove the effectiveness and feasibility of the proposed method.展开更多
To improve the performance of composite pseudo-noise (PN) code clock recovery in a regenerative PN ranging system at a low symbol signal-to-noise ratio (SNR), a novel chip tracking loop (CTL) used for regenerati...To improve the performance of composite pseudo-noise (PN) code clock recovery in a regenerative PN ranging system at a low symbol signal-to-noise ratio (SNR), a novel chip tracking loop (CTL) used for regenerative PN ranging clock recovery is adopted. The CTL is a modified data transition tracking loop (DTTL). The difference between them is that the Q channel output of the CTL is directly multiplied by a clock component, while that of the DTTL is multiplied by the Ⅰ channel transition detector output. Under the condition of a quasi-squareware PN ranging code, the tracking ( mean square timing jitter) performance of the CTL is analyzed. The tracking performances of the CTL and the DTTL, are compared over a wide range of symbol SNRs. The result shows that the CTL and the DTTL have the same performance at a large symbol SNR, while at a low symbol SNR, the former offers a noticeable enhancement.展开更多
As the complexity of space exploration missions augments,how to enhance the overall performance of communication,ranging or other functions has become a challengeable problem.Considering the integration of communicati...As the complexity of space exploration missions augments,how to enhance the overall performance of communication,ranging or other functions has become a challengeable problem.Considering the integration of communication and ranging,we present a bit-level composite signal for simultaneous ranging and communication.In this composite method,through a specially designed mapping scheme using low-weight codewords,the information sequence is converted to a sparse sequence which is then superimposed on the ranging code.For ranging,the correlation characteristics of the ranging code component can be maintained to calculate the transmitter-receiver distance.For communications,the sparse sequence can be extracted without interference by eliminating the ranging code component.Simulation results show that the proposed composite signal can support communication and ranging simultaneously with limited sacrifice of ranging performance,and the performance loss of ranging can be controlled and minimized by lowering the density of information sequences using different sparsification encoding methods.展开更多
Orthogonal frequency division multiplexing(OFDM) radar with multicarrier phase-coded waveforms has been recently introduced to achieve high range resolution.The conventional method for obtaining the high resolution ...Orthogonal frequency division multiplexing(OFDM) radar with multicarrier phase-coded waveforms has been recently introduced to achieve high range resolution.The conventional method for obtaining the high resolution range profile(HRRP) is based on matched filters.A method of synthesizing HRRP based on the fast Fourier transform(FFT) and decoding is proposed.The mathematical expressions of HRRP are derived by assuming an elementary scenario of point-scattering targets.Based on the characteristic of OFDM multicarrier signals,it mainly analyzes the influence on HRRP exerted by several factors,such as velocity compensation errors,the sampling frequency offset,and so on.The conclusions are significant for the design of the OFDM imaging radar.Finally,the simulation results demonstrate the validity of the conclusions.展开更多
Most solutions for detecting buffer overflow are based on source code. But the requirement tor source code is not always practical especially for business software. A new approach was presented to detect statically th...Most solutions for detecting buffer overflow are based on source code. But the requirement tor source code is not always practical especially for business software. A new approach was presented to detect statically the potential buffer overflow vulnerabilities in the binary code of software. The binary code was translated into assembly code without the lose of the information of string operation functions. The feature code abstract graph was constructed to generate more accurate constraint statements, and analyze the assembly code using the method of integer range constraint. After getting the elementary report on suspicious code where buffer overflows possibly happen, the control flow sensitive analysis using program dependence graph was done to decrease the rate of false positive. A prototype was implemented which demonstrates the feasibility and efficiency of the new approach.展开更多
A true random coded photon counting Lidar system is proposed in this paper,in which a single photon detector acts as the true random sequence signal generator instead of the traditional function generator.Compared wit...A true random coded photon counting Lidar system is proposed in this paper,in which a single photon detector acts as the true random sequence signal generator instead of the traditional function generator.Compared with the traditional pseudo-random coded method,the true random coded method not only improves the anti-crosstalk capability of the system,but more importantly,it effectively overcomes the adverse effect of the detector’s dead time on the ranging performance.The experiment results show that the ranging performance of the true random coded method is obviously better than that of the pseudo-random coded method.As a result,a three-dimensional scanning imaging of a model car is completed by the true random coded method.展开更多
Range-Doppler (RD) method and Reverse-Range-Doppler (RRD) method are combined together to achieve automatic geocoding of Synthetic Aperture Radar (SAR) image quickly and accurately in the paper. The RD method is first...Range-Doppler (RD) method and Reverse-Range-Doppler (RRD) method are combined together to achieve automatic geocoding of Synthetic Aperture Radar (SAR) image quickly and accurately in the paper. The RD method is firstly used to locate the four corners of the image, then the other pixels of the image can be located by Reverse-Range-Doppler (RRD) method. Resampling is performed at last. The approach has an advantage over previous techniques in that it does not require ground control points and is independent of spacecraft attitude knowledge or control. It can compensate the shift due to the assumed Doppler frequency in SAR image preprocessing. RRD simplifies the process of RD, therefore speeds up the computation. The experimental results show that a SAR image can be automated geocoded in 30 s using the single CPU (3 GHz) with 1 G memory and an accuracy of 10 m is attainable with this method.展开更多
A modiΡed pseudo-noise(PN) code regeneration method is proposed to improve the clock tracking accuracy without impairing the code acquisition time performance.Thus,the method can meet the requirement of high accura...A modiΡed pseudo-noise(PN) code regeneration method is proposed to improve the clock tracking accuracy without impairing the code acquisition time performance.Thus,the method can meet the requirement of high accuracy ranging measurements in short time periods demanded by radio-science missions.The tracking error variance is derived by linear analysis.For some existing PN codes,which can be acquired rapidly,the tracking error variance performance of the proposed method is about 2.6 dB better than that of the JPL scheme(originally proposed by Jet Propulsion Laboratory),and about 1.5 dB better than that of the traditional double loop scheme.展开更多
A pseudo-random coding side-lobe suppression method based on CLEAN algorithm is introduced.The CLEAN algorithm mainly processes pulse compression results of a pseudo-random coding,and estimates a target's distance by...A pseudo-random coding side-lobe suppression method based on CLEAN algorithm is introduced.The CLEAN algorithm mainly processes pulse compression results of a pseudo-random coding,and estimates a target's distance by a method named interpolation method,so that we can get an ideal pulse compression result of the target,and then use the adjusted ideal pulse compression side-lobe to cut the actual pulse compression result,so as to achieve the remarkable performance of side-lobe suppression for large targets,and let the adjacent small targets appear.The computer simulations by MATLAB with this method analyze the effect of side-lobe suppression in an ideal or noisy environment.It is proved that this method can effectively solve the problem due to the side-lobe of pseudo-random coding being too high,and can enhance the radar's multi-target detection ability.展开更多
High Efficiency Video Coding (HEVC) is the latest international video coding standard, which can provide the similar quality with about half bandwidth compared with its predecessor, H.264/MPEG?4 AVC. To meet the requi...High Efficiency Video Coding (HEVC) is the latest international video coding standard, which can provide the similar quality with about half bandwidth compared with its predecessor, H.264/MPEG?4 AVC. To meet the requirement of higher bit depth coding and more chroma sampling formats, range extensions of HEVC were developed. This paper introduces the coding tools in HEVC range extensions and provides experimental results to compare HEVC range extensions with previous video coding standards. Ex?perimental results show that HEVC range extensions improve coding efficiency much over H.264/MPEG?4 AVC High Predictive profile, especially for 4K sequences.展开更多
基金supported by the Special Science Foundation of Quzhou(2020D007,2021D009).
文摘Target detection is an important research content in the radar field.At present,efforts are being made to optimize the precision of detection information.In this paper,we use the high pulse repetition frequency(HPRF)transmission method and orthogonal biphase coded signals in each pulse to avoid velocity ambiguity and range ambiguity of radar detection.In addition,We also apply Walsh matrix and genetic algorithm(GA)to generate satisfying orthogonal biphase coded signals with low auto-correlation sidelobe peak and cross-correlation peak,which make the results more accurate.In a radar receiver,data rearrangement of echo signals is performed,and then pulse compression and moving target detection(MTD)are utilized to get the final velocity and range information of a target without velocity ambiguity and range ambiguity.Besides,a small transmitting pulse time width is adopted to reduce the working blind area,and two different high pulse repetition frequencies(HPRFs)are adopted to solve the problem of range eclipse.Simulation results finally prove the effectiveness and feasibility of the proposed method.
文摘To improve the performance of composite pseudo-noise (PN) code clock recovery in a regenerative PN ranging system at a low symbol signal-to-noise ratio (SNR), a novel chip tracking loop (CTL) used for regenerative PN ranging clock recovery is adopted. The CTL is a modified data transition tracking loop (DTTL). The difference between them is that the Q channel output of the CTL is directly multiplied by a clock component, while that of the DTTL is multiplied by the Ⅰ channel transition detector output. Under the condition of a quasi-squareware PN ranging code, the tracking ( mean square timing jitter) performance of the CTL is analyzed. The tracking performances of the CTL and the DTTL, are compared over a wide range of symbol SNRs. The result shows that the CTL and the DTTL have the same performance at a large symbol SNR, while at a low symbol SNR, the former offers a noticeable enhancement.
基金This work was supported in part by National Natural Science Foundation of China(61671324)the Director’s Funding from Pilot National Laboratory for Marine Science and Technology(Qingdao)(QNLM201712)Zhan Xu was supported in part by National Natural Science Foundation of China(61620106001).
文摘As the complexity of space exploration missions augments,how to enhance the overall performance of communication,ranging or other functions has become a challengeable problem.Considering the integration of communication and ranging,we present a bit-level composite signal for simultaneous ranging and communication.In this composite method,through a specially designed mapping scheme using low-weight codewords,the information sequence is converted to a sparse sequence which is then superimposed on the ranging code.For ranging,the correlation characteristics of the ranging code component can be maintained to calculate the transmitter-receiver distance.For communications,the sparse sequence can be extracted without interference by eliminating the ranging code component.Simulation results show that the proposed composite signal can support communication and ranging simultaneously with limited sacrifice of ranging performance,and the performance loss of ranging can be controlled and minimized by lowering the density of information sequences using different sparsification encoding methods.
基金supported by the National Natural Science Foundation of China (6087213461072117)
文摘Orthogonal frequency division multiplexing(OFDM) radar with multicarrier phase-coded waveforms has been recently introduced to achieve high range resolution.The conventional method for obtaining the high resolution range profile(HRRP) is based on matched filters.A method of synthesizing HRRP based on the fast Fourier transform(FFT) and decoding is proposed.The mathematical expressions of HRRP are derived by assuming an elementary scenario of point-scattering targets.Based on the characteristic of OFDM multicarrier signals,it mainly analyzes the influence on HRRP exerted by several factors,such as velocity compensation errors,the sampling frequency offset,and so on.The conclusions are significant for the design of the OFDM imaging radar.Finally,the simulation results demonstrate the validity of the conclusions.
文摘Most solutions for detecting buffer overflow are based on source code. But the requirement tor source code is not always practical especially for business software. A new approach was presented to detect statically the potential buffer overflow vulnerabilities in the binary code of software. The binary code was translated into assembly code without the lose of the information of string operation functions. The feature code abstract graph was constructed to generate more accurate constraint statements, and analyze the assembly code using the method of integer range constraint. After getting the elementary report on suspicious code where buffer overflows possibly happen, the control flow sensitive analysis using program dependence graph was done to decrease the rate of false positive. A prototype was implemented which demonstrates the feasibility and efficiency of the new approach.
基金This work was supported by the National Natural Science Foundation of China(NSFC)(61805249)the Youth Innovation Promotion Association CAS(2019369).
文摘A true random coded photon counting Lidar system is proposed in this paper,in which a single photon detector acts as the true random sequence signal generator instead of the traditional function generator.Compared with the traditional pseudo-random coded method,the true random coded method not only improves the anti-crosstalk capability of the system,but more importantly,it effectively overcomes the adverse effect of the detector’s dead time on the ranging performance.The experiment results show that the ranging performance of the true random coded method is obviously better than that of the pseudo-random coded method.As a result,a three-dimensional scanning imaging of a model car is completed by the true random coded method.
文摘Range-Doppler (RD) method and Reverse-Range-Doppler (RRD) method are combined together to achieve automatic geocoding of Synthetic Aperture Radar (SAR) image quickly and accurately in the paper. The RD method is firstly used to locate the four corners of the image, then the other pixels of the image can be located by Reverse-Range-Doppler (RRD) method. Resampling is performed at last. The approach has an advantage over previous techniques in that it does not require ground control points and is independent of spacecraft attitude knowledge or control. It can compensate the shift due to the assumed Doppler frequency in SAR image preprocessing. RRD simplifies the process of RD, therefore speeds up the computation. The experimental results show that a SAR image can be automated geocoded in 30 s using the single CPU (3 GHz) with 1 G memory and an accuracy of 10 m is attainable with this method.
基金supported by the National Natural Science Foundation of China (60904090)the Postdoctoral Science Foundation of China(20080431306)the Special Postdoctoral Science Foundation of China (20081458)
文摘A modiΡed pseudo-noise(PN) code regeneration method is proposed to improve the clock tracking accuracy without impairing the code acquisition time performance.Thus,the method can meet the requirement of high accuracy ranging measurements in short time periods demanded by radio-science missions.The tracking error variance is derived by linear analysis.For some existing PN codes,which can be acquired rapidly,the tracking error variance performance of the proposed method is about 2.6 dB better than that of the JPL scheme(originally proposed by Jet Propulsion Laboratory),and about 1.5 dB better than that of the traditional double loop scheme.
文摘A pseudo-random coding side-lobe suppression method based on CLEAN algorithm is introduced.The CLEAN algorithm mainly processes pulse compression results of a pseudo-random coding,and estimates a target's distance by a method named interpolation method,so that we can get an ideal pulse compression result of the target,and then use the adjusted ideal pulse compression side-lobe to cut the actual pulse compression result,so as to achieve the remarkable performance of side-lobe suppression for large targets,and let the adjacent small targets appear.The computer simulations by MATLAB with this method analyze the effect of side-lobe suppression in an ideal or noisy environment.It is proved that this method can effectively solve the problem due to the side-lobe of pseudo-random coding being too high,and can enhance the radar's multi-target detection ability.
文摘High Efficiency Video Coding (HEVC) is the latest international video coding standard, which can provide the similar quality with about half bandwidth compared with its predecessor, H.264/MPEG?4 AVC. To meet the requirement of higher bit depth coding and more chroma sampling formats, range extensions of HEVC were developed. This paper introduces the coding tools in HEVC range extensions and provides experimental results to compare HEVC range extensions with previous video coding standards. Ex?perimental results show that HEVC range extensions improve coding efficiency much over H.264/MPEG?4 AVC High Predictive profile, especially for 4K sequences.