In this paper,we study the pseudo-spherical evolutes of curves in three dimensional hyperbolic space.We use techniques from singularity theory to investigate the singularities of pseudo-spherical evolutes and establis...In this paper,we study the pseudo-spherical evolutes of curves in three dimensional hyperbolic space.We use techniques from singularity theory to investigate the singularities of pseudo-spherical evolutes and establish some relationships between singularities of these curves and geometric invariants of curves under the action of the Lorentz group.Besides,we defray with illustration some computational examples in support our main results.展开更多
In this paper, we shall show that the Hamiltonian structure can be defined for any nonlinear evolution equations which describe surfaces of a constant negative curvature, so that the densities of conservation laws can...In this paper, we shall show that the Hamiltonian structure can be defined for any nonlinear evolution equations which describe surfaces of a constant negative curvature, so that the densities of conservation laws can be considered as corresponding Hamiltonians. This paper obtains the soliton solution and conserved quantities of a new fifth-order nonlinear evolution equation by the aid of inverse scattering method.展开更多
It is shown that the two-component Camassa-Holm and Hunter-Saxton systems are geometrically integrable, namely they describe pseudo-spherical surfaces. As a consequence, their infinite number of conservation laws are ...It is shown that the two-component Camassa-Holm and Hunter-Saxton systems are geometrically integrable, namely they describe pseudo-spherical surfaces. As a consequence, their infinite number of conservation laws are directly constructed. In addition, a class of nonlocal symmetries depending on the pseudo-potentials are obtained.展开更多
文摘In this paper,we study the pseudo-spherical evolutes of curves in three dimensional hyperbolic space.We use techniques from singularity theory to investigate the singularities of pseudo-spherical evolutes and establish some relationships between singularities of these curves and geometric invariants of curves under the action of the Lorentz group.Besides,we defray with illustration some computational examples in support our main results.
文摘In this paper, we shall show that the Hamiltonian structure can be defined for any nonlinear evolution equations which describe surfaces of a constant negative curvature, so that the densities of conservation laws can be considered as corresponding Hamiltonians. This paper obtains the soliton solution and conserved quantities of a new fifth-order nonlinear evolution equation by the aid of inverse scattering method.
基金Supported by the China NSF for Distinguished Young Scholars under Grant No.10925104
文摘It is shown that the two-component Camassa-Holm and Hunter-Saxton systems are geometrically integrable, namely they describe pseudo-spherical surfaces. As a consequence, their infinite number of conservation laws are directly constructed. In addition, a class of nonlocal symmetries depending on the pseudo-potentials are obtained.