In this work,we explore the suitability of several density functionals with the generalized gradient approximation(GGA)and beyond for describing the dissociative chemisorption of methane on the reconstructed Pt(110)-(...In this work,we explore the suitability of several density functionals with the generalized gradient approximation(GGA)and beyond for describing the dissociative chemisorption of methane on the reconstructed Pt(110)-(2×1)surface.The bulk and surface structures of the metal,methane adsorption energy,and dissociation barrier are used to assess the functionals.A van der Waals corrected GGA functional(optPBE-vdW)and a metaGGA functional with van der Waals correction(MS PBEl-rVV10)are selected for ab initio molecular dynamics calculations of the sticking probability.Our results suggest that the use of these two functionals may lead to a better agreement with existing experimental results,thus serving as a good starting point for future development of reliable machine-learned potential energy surfaces for the dissociation of methane on the Pt(110)-(2×1)surface.展开更多
The bimetallic catalyst Ru-Pt/ γ -Al 2O 3 was prepared by impregnating H 2PtCl 6 and RuCl 3 aqueous solution in the presence of PVP(40 000). Its catalytic performance in selective hydrogenation of \{ p -chloronitrobe...The bimetallic catalyst Ru-Pt/ γ -Al 2O 3 was prepared by impregnating H 2PtCl 6 and RuCl 3 aqueous solution in the presence of PVP(40 000). Its catalytic performance in selective hydrogenation of \{ p -chloronitrobenzene\}( p -CNB) was studied. The results indicate that the activity of Ru-Pt/ γ -Al 2O 3[\{ n (ruthenium)\}∶ n (platinum)=4∶1] is much higher than that of Ru/ γ -Al 2O 3,while the amount of dehalogenation product(aniline) and other by-products are much fewer than that by using Pt/ γ -Al 2O 3 as the catalyst. There is synergistic effect of ruthenium and platinum in bimetallic catalyst for selective hydrogenation of p -CNB. Under the reaction conditions t =50 ℃, p H 2 = 1.0 MPa, reaction time 60 min,\{ n (substrate)∶\} n (total amount of metal content)=1000∶1,the conversion of p -CNB and the selectivity to p -chloroaniline( p -CNA) by using Ru-Pt/ γ -Al 2O 3 as the catalyst are 48.2% and 85.9%,respectively. The effect of other metal cations(introduced to the reaction system with the corresponding metal chloride solution) on the reaction was investigated. It was found that catalytic performance of Ru-Pt/ γ -Al 2O 3 could be greatly improved by modfication of some metal cations. When Co 2+ and Ni 2+ were used as modifiers for the catalyst Ru-Pt/ γ -Al 2O 3 under above mentioned reaction conditions,the conversions of p -CNB increase to 74.5% and 87.8%,as well as the selectivities of p -CAN increase to 98.9% and 99.4%,respectively. Fe 3+ and Sn 4+ were the best modifiers for Ru-Pt/ γ -Al 2O 3 under the same reaction conditions. The conversions of p -CNB and the selectivities of p -CAN can reach 100% and >99.0%,respectively. However,the catalysts can be poisoned by Zn 2+ and Sn 2+ .展开更多
基金financial support from the National Natural Science Foundation of China(No.21973013 and No.21673040)the National Natural Science Foundation of Fujian Province,China(No.2020J02025)+3 种基金the“Chuying Program”for the Top Young Talents of Fujian Provincesupported financially through a NWO/CW TOP grant(No.715.017.001)by a grant of supercomputer time from NWO Exacte en Natuurwetenschappen(NWO-ENW,No.2019.015)the National Science Foundation(No.CHE1951328)。
文摘In this work,we explore the suitability of several density functionals with the generalized gradient approximation(GGA)and beyond for describing the dissociative chemisorption of methane on the reconstructed Pt(110)-(2×1)surface.The bulk and surface structures of the metal,methane adsorption energy,and dissociation barrier are used to assess the functionals.A van der Waals corrected GGA functional(optPBE-vdW)and a metaGGA functional with van der Waals correction(MS PBEl-rVV10)are selected for ab initio molecular dynamics calculations of the sticking probability.Our results suggest that the use of these two functionals may lead to a better agreement with existing experimental results,thus serving as a good starting point for future development of reliable machine-learned potential energy surfaces for the dissociation of methane on the Pt(110)-(2×1)surface.
文摘The bimetallic catalyst Ru-Pt/ γ -Al 2O 3 was prepared by impregnating H 2PtCl 6 and RuCl 3 aqueous solution in the presence of PVP(40 000). Its catalytic performance in selective hydrogenation of \{ p -chloronitrobenzene\}( p -CNB) was studied. The results indicate that the activity of Ru-Pt/ γ -Al 2O 3[\{ n (ruthenium)\}∶ n (platinum)=4∶1] is much higher than that of Ru/ γ -Al 2O 3,while the amount of dehalogenation product(aniline) and other by-products are much fewer than that by using Pt/ γ -Al 2O 3 as the catalyst. There is synergistic effect of ruthenium and platinum in bimetallic catalyst for selective hydrogenation of p -CNB. Under the reaction conditions t =50 ℃, p H 2 = 1.0 MPa, reaction time 60 min,\{ n (substrate)∶\} n (total amount of metal content)=1000∶1,the conversion of p -CNB and the selectivity to p -chloroaniline( p -CNA) by using Ru-Pt/ γ -Al 2O 3 as the catalyst are 48.2% and 85.9%,respectively. The effect of other metal cations(introduced to the reaction system with the corresponding metal chloride solution) on the reaction was investigated. It was found that catalytic performance of Ru-Pt/ γ -Al 2O 3 could be greatly improved by modfication of some metal cations. When Co 2+ and Ni 2+ were used as modifiers for the catalyst Ru-Pt/ γ -Al 2O 3 under above mentioned reaction conditions,the conversions of p -CNB increase to 74.5% and 87.8%,as well as the selectivities of p -CAN increase to 98.9% and 99.4%,respectively. Fe 3+ and Sn 4+ were the best modifiers for Ru-Pt/ γ -Al 2O 3 under the same reaction conditions. The conversions of p -CNB and the selectivities of p -CAN can reach 100% and >99.0%,respectively. However,the catalysts can be poisoned by Zn 2+ and Sn 2+ .