期刊文献+
共找到1,237篇文章
< 1 2 62 >
每页显示 20 50 100
Single-atom catalysts for the electrochemical reduction of carbon dioxide into hydrocarbons and oxygenates 被引量:1
1
作者 Karl Adrian Gandionco Juwon Kim +2 位作者 Lieven Bekaert Annick Hubin Jongwoo Lim 《Carbon Energy》 SCIE EI CAS CSCD 2024年第3期64-117,共54页
The electrochemical reduction of carbon dioxide offers a sound and economically viable technology for the electrification and decarbonization of the chemical and fuel industries.In this technology,an electrocatalytic ... The electrochemical reduction of carbon dioxide offers a sound and economically viable technology for the electrification and decarbonization of the chemical and fuel industries.In this technology,an electrocatalytic material and renewable energy-generated electricity drive the conversion of carbon dioxide into high-value chemicals and carbon-neutral fuels.Over the past few years,single-atom catalysts have been intensively studied as they could provide near-unity atom utilization and unique catalytic performance.Single-atom catalysts have become one of the state-of-the-art catalyst materials for the electrochemical reduction of carbon dioxide into carbon monoxide.However,it remains a challenge for single-atom catalysts to facilitate the efficient conversion of carbon dioxide into products beyond carbon monoxide.In this review,we summarize and present important findings and critical insights from studies on the electrochemical carbon dioxide reduction reaction into hydrocarbons and oxygenates using single-atom catalysts.It is hoped that this review gives a thorough recapitulation and analysis of the science behind the catalysis of carbon dioxide into more reduced products through singleatom catalysts so that it can be a guide for future research and development on catalysts with industry-ready performance for the electrochemical reduction of carbon dioxide into high-value chemicals and carbon-neutral fuels. 展开更多
关键词 ELECTROCATALYSIS electrochemical CO_(2)reduction hydrocarbons OXYGENATES single-atom catalysts
下载PDF
Silica-modified Pt/TiO_(2) catalysts with tunable suppression of strong metal-support interaction for cinnamaldehyde hydrogenation
2
作者 Zhengjian Hou Yuanyuan Zhu +6 位作者 Hua Chi Li Zhao Huijie Wei Yanyan Xi Lishuang Ma Xiang Feng Xufeng Lin 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2024年第6期189-198,共10页
Tuning Strong Metal-support Interactions(SMSI)is a key strategy to obtain highly active catalysts,but conventional methods usually enable TiO_(x) encapsulation of noble metal components to minimize the exposure of nob... Tuning Strong Metal-support Interactions(SMSI)is a key strategy to obtain highly active catalysts,but conventional methods usually enable TiO_(x) encapsulation of noble metal components to minimize the exposure of noble metals.This study demonstrates a catalyst preparation method to modulate a weak encapsulation of Pt metal nanoparticles(NPs)with the supported TiO_(2),achieving the moderate suppression of SMSI effects.The introduction of silica inhibits this encapsulation,as reflected in the characterization results such as XPS and HRTEM,while the Ti^(4+) to Ti^(3+) conversion due to SMSI can still be found on the support surface.Furthermore,the hydrogenation of cinnamaldehyde(CAL)as a probe reaction revealed that once this encapsulation behavior was suppressed,the adsorption capacity of the catalyst for small molecules like H_(2) and CO was enhanced,which thereby improved the catalytic activity and facilitated the hydrogenation of CAL.Meanwhile,the introduction of SiO_(2) also changed the surface structure of the catalyst,which inhibited the occurrence of the acetal reaction and improved the conversion efficiency of C=O and C=C hydrogenation.Systematic manipulation of SMSI formation and its consequence on the performance in catalytic hydrogenation reactions are discussed. 展开更多
关键词 pt catalyst Silica modification HYDROGENATION CINNAMALDEHYDE Strong metal-support interaction
下载PDF
Long-range electron synergy over Pt_(1)-Co_(1)/CN bimetallic single-atom catalyst in enhancing charge separation for photocatalytic hydrogen production 被引量:2
3
作者 Man Yang Jing Mei +3 位作者 Yujing Ren Jie Cui Shuhua Liang Shaodong Sun 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2023年第6期502-509,I0011,共9页
The development of novel single-atom catalysts with optimal electron configuration and economical noble-metal cocatalyst for efficient photocatalytic hydrogen production is of great importance,but still challenging.He... The development of novel single-atom catalysts with optimal electron configuration and economical noble-metal cocatalyst for efficient photocatalytic hydrogen production is of great importance,but still challenging.Herein,we fabricate Pt and Co single-atom sites successively on polymeric carbon nitride(CN).In this Pt_(1)-Co_(1)/CN bimetallic single-atom catalyst,the noble-metal active sites are maximized,and the single-atomic Co_(1)N_4sites are tuned to Co_(1)N_3sites by photogenerated electrons arising from the introduced single-atomic Pt_(1)N_4sites.Mechanism studies and density functional theory(DFT)calculations reveal that the 3d orbitals of Co_(1)N_3single sites are filled with unpaired d-electrons,which lead to the improved visible-light response,carrier separation and charge migration for CN photocatalysts.Thereafter,the protons adsorption and activation are promoted.Taking this advantage of long-range electron synergy in bimetallic single atomic sites,the photocatalytic hydrogen evolution activity over Pt_(1)-Co_(1)/CN achieves 915.8 mmol g^(-1)Pt h^(-1),which is 19.8 times higher than Co_(1)/CN and 3.5 times higher to Pt_(1)/CN.While this electron-synergistic effect is not so efficient for Pt nanoclusters.These results demonstrate the synergistic effect at electron-level and provide electron-level guidance for the design of efficient photocatalysts. 展开更多
关键词 Bimetallic single-atom catalyst Long-range electron synergy Charge separation/transfer Carbon nitride Hydrogen production
下载PDF
Progress and perspective of single-atom catalysts for membrane electrode assembly of fuel cells 被引量:2
4
作者 Zhongxin Song Junjie Li +4 位作者 Qianling Zhang Yongliang Li Xiangzhong Ren Lei Zhang Xueliang Sun 《Carbon Energy》 SCIE CSCD 2023年第7期38-56,共19页
A fuel cell is an energy conversion device that can continuously input fuel and oxidant into the device through an electrochemical reaction to release electrical energy.Although noble metals show good activity in fuel... A fuel cell is an energy conversion device that can continuously input fuel and oxidant into the device through an electrochemical reaction to release electrical energy.Although noble metals show good activity in fuel cell-related electrochemical reactions,their ever-increasing price considerably hinders their industrial application.Improvement of atom utilization efficiency is considered one of the most effective strategies to improve the mass activity of catalysts,and this allows for the use of fewer catalysts,saving greatly on the cost.Thus,single-atom catalysts(SACs)with an atom utilization efficiency of 100%have been widely developed,which show remarkable performance in fuel cells.In this review,we will describe recent progress on the development of SACs for membrane electrode assembly of fuel cell applications.First,we will introduce several effective routes for the synthesis of SACs.The reaction mechanism of the involved reactions will also be introduced as it is highly determinant of the final activity.Then,we will systematically summarize the application of Pt group metal(PGM)and nonprecious group metal(non-PGM)catalysts in membrane electrode assembly of fuel cells.This review will offer numerous experiences for developing potential industrialized fuel cell catalysts in the future. 展开更多
关键词 fuel cells membrane electrode assembly oxygen reduction reaction reaction mechanism single-atom catalysts
下载PDF
Defect engineering of high-loading single-atom catalysts for electrochemical carbon dioxide reduction 被引量:1
5
作者 Yang Li Zhenjiang He +3 位作者 Feixiang Wu Shuangyin Wang Yi Cheng Sanping Jiang 《Materials Reports(Energy)》 2023年第2期124-141,I0003,共19页
Electrochemical carbon dioxide reduction reaction(CO_(2)RR)provides an attractive approach to carbon capture and utilization for the production high-value-added products.However,CO_(2)RR still suffers from poor select... Electrochemical carbon dioxide reduction reaction(CO_(2)RR)provides an attractive approach to carbon capture and utilization for the production high-value-added products.However,CO_(2)RR still suffers from poor selectivity and low current density due to its sluggish kinetics and multitudinous reaction pathways.Single-atom catalysts(SACs)demonstrate outstanding activity,excellent selectivity,and remarkable atom utilization efficiency,which give impetus to the search for electrocatalytic processes aiming at high selectivity.There appears significant activity in the development of efficient SACs for CO_(2)RR,while the density of the atomic sites remains a considerable barrier to be overcome.To construct high-metal-loading SACs,aggregation must be prevented,and thus novel strategies are required.The key to creating high-density atomically dispersed sites is designing enough anchoring sites,normally defects,to stabilize the highly mobile separated metal atoms.In this review,we summarized the advances in developing high-loading SACs through defect engineering,with a focus on the synthesis strategies to achieve high atomic site loading.Finally,the future opportunities and challenges for CO_(2)RR in the area of high-loading single-atom electrocatalysts are also discussed. 展开更多
关键词 single-atom catalysts High loading ELECTROCATALYSIS Carbon dioxide reduction(CO_(2)RR) Transition metals
下载PDF
Regulating the coordination environment of Ru single-atom catalysts and unravelling the reaction path of acetylene hydrochlorination
6
作者 Yang Yang Chaoyue Zhao +2 位作者 Xianliang Qiao Qingxin Guan Wei Li 《Green Energy & Environment》 SCIE EI CAS CSCD 2023年第4期1141-1153,共13页
In this work,DFT calculations were used firstly to simulate the nitrogen coordinated metal single-atom catalysts(M-N_(x)SACs,M=Hg,Cu,Au,and Ru) to predict their catalytic activities in acetylene hydrochlorination.The ... In this work,DFT calculations were used firstly to simulate the nitrogen coordinated metal single-atom catalysts(M-N_(x)SACs,M=Hg,Cu,Au,and Ru) to predict their catalytic activities in acetylene hydrochlorination.The DFT results showed that Ru-N_(x)SACs had the best catalytic performance among the four catalysts,and Ru-N_(x)SACs could effectively inhibit the reduction of ruthenium cation.To verify the DFT results,Ru-N_(x)SACs were fabricated by pyrolyzing MOFs in-situ spatially confined metal precursors.The N coordination environment could be controlled by changing the pyrolysis temperature.Catalytic performance tests indicated that low N coordination number(Ru-N_(2),Ru-N_(3))exhibited excellent catalytic activity and stability compared to RuCl_(3)catalyst.DFT calculations further revealed that Ru-N_(2)and Ru-N_(3)had a tendency to activate HCl at the first step of reaction,whereas Ru-N4tended to activate C_(2)H_(2).These findings will serve as a reference for the design and control of metal active sites. 展开更多
关键词 single-atom catalyst Coordination environment Ru-based catalyst DFT calculations Acetylene hydrochlorination
下载PDF
1+1>2: Learning from the interfacial modulation on single-atom electrocatalysts to design dual-atom electrocatalysts for dinitrogen reduction
7
作者 Qiang Zhou Feng Gong +1 位作者 Yunlong Xie Rui Xiao 《Green Energy & Environment》 SCIE EI CAS CSCD 2023年第6期1753-1763,共11页
Developing efficient electrocatalysts for converting dinitrogen to ammonia through electrocatalysis is of significance to the decentralized ammonia production. Here, through high-throughput density functional theory c... Developing efficient electrocatalysts for converting dinitrogen to ammonia through electrocatalysis is of significance to the decentralized ammonia production. Here, through high-throughput density functional theory calculations, we demonstrated that the interfacial modulation of hexagonal boron nitride/graphene(hBN-graphene) could sufficiently improve the catalytic activity of the single transition metal atom catalysts for nitrogen reduction reaction(NRR). It was revealed that Re@hBN-graphene and Os@hBN-graphene possessed remarkable NRR catalytic activity with low limiting potentials of 0.29 V and 0.33 V, respectively. Furthermore, the mechanism of the enhanced catalytic activity was investigated based on various descriptors of the adsorption energies of intermediates, where the synergistic effect of hBN and graphene in the hybrid substrate was found to play a key role. Motivated by the synergistic effect of hybrid substrate in single-atom catalysts, a novel strategy was proposed to efficiently design dual-atom catalysts by integrating the merits of both metal components. The as-designed dual-atom catalyst Fe-Mo@hBN exhibited more excellent NRR catalytic performance with a limiting potential of 0.17 V, manifesting the solidity of the design strategy. Our findings open new avenues for the search of heterostructure substrates for single-atom catalysts and the efficient design of dualatom catalysts for NRR. 展开更多
关键词 Nitrogen reduction reaction Boron nitride Graphene High throughput DESCRIptOR Density functional theory single-atom catalyst Dual-atom catalyst
下载PDF
Metal-organic frameworks based single-atom catalysts for advanced fuel cells and rechargeable batteries
8
作者 Yifei Wu Peng Hu +5 位作者 Fengping Xiao Xiaoting Yu Wenqi Yang Minqi Liang Ziwei Liang Aixin Zhu 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2023年第5期501-534,I0012,共35页
The next-generation energy storage systems such as fuel cells,metal-air batteries,and alkali metal(Li,Na)-chalcogen(S,Se)batteries have received increasing attention owing to their high energy density and low cost.How... The next-generation energy storage systems such as fuel cells,metal-air batteries,and alkali metal(Li,Na)-chalcogen(S,Se)batteries have received increasing attention owing to their high energy density and low cost.However,one of the main obstacles of these systems is the poor reaction kinetics in the involved chemical reactions.Therefore,it is essential to incorporate suitable and efficient catalysts into the cell.These years,single-atom catalysts(SACs)are emerging as a frontier in catalysis due to their maximum atom efficiency and unique reaction selectivity.For SACs fabrication,metal-organic frameworks(MOFs)have been confirmed as promising templates or precursors due to their high metal loadings,structural adjustability,porosity,and tailorable catalytic site.In this review,we summarize effective strategies for fabricating SACs by MOFs with corresponding advanced characterization techniques and illustrate the key role of MOFs-based SACs in these batteries by explaining their reaction mechanisms and challenges.Finally,current applications,prospects,and opportunities for MOFs-based SACs in energy storage systems are discussed. 展开更多
关键词 Metal-organic frameworks single-atom catalysts Rechargeable batteries ELECTROcatalysts Coordination configuration
下载PDF
Construction of bifunctional single-atom catalysts on the optimized β-Mo_(2)C surface for highly selective hydrogenation of CO_(2) into ethanol 被引量:3
9
作者 Xue Ye Junguo Ma +5 位作者 Wenguang Yu Xiaoli Pan Chongya Yang Chang Wang Qinggang Liu Yanqiang Huang 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2022年第4期184-192,共9页
Green and economical CO_(2)utilization is significant for CO_(2)emission reduction and energy development.Here,the 1D Mo_(2)C nanowires with dominant(101)crystal surfaces were modified by the deposition of atomic func... Green and economical CO_(2)utilization is significant for CO_(2)emission reduction and energy development.Here,the 1D Mo_(2)C nanowires with dominant(101)crystal surfaces were modified by the deposition of atomic functional components Rh and K.While unmodifiedβMo_(2)C could only convert CO_(2)to methanol,the designed catalyst of K_(0.2)Rh_(0.2)/β-Mo_(2)C exhibited up to 72.1%of ethanol selectivity at 150℃.It was observed that the atomically dispersed Rh could form the bifunctional active centres with the active carrierβMo_(2)C with the synergistic effects to achieve highly specific controlled C–C coupling.By promoting the CO_(2)adsorption and activation,the introduction of an alkali metal(K)mainly regulated the balanced performance of the two active centres,which in turn improved the hydrogenation selectivity.Overall,the controlled modification ofβMo_(2)C provides a new design strategy for the highly efficient,lowtemperature hydrogenation of CO_(2)to ethanol with single-atom catalysts,which provides an excellent example for the rational design of the complex catalysts. 展开更多
关键词 CO_(2)hydrogenation C–C coupling single-atom catalyst Ethanol synthesis
下载PDF
Geometric structures,electronic characteristics,stabilities,catalytic activities,and descriptors of graphene-based single-atom catalysts
10
作者 Weijie Yang Shaopeng Xu +5 位作者 Kai Ma Chongchong Wu Ian D.Gates Xunlei Ding Weihua Meng Zhengyang Gao 《Nano Materials Science》 CAS 2020年第2期120-131,共12页
Single-atom catalysts(SACs)have been a research hotspot due to their high catalytic activity,selectivity,and atomic utilization rates.However,the theoretical research of SACs is relatively fragmented,which restricts f... Single-atom catalysts(SACs)have been a research hotspot due to their high catalytic activity,selectivity,and atomic utilization rates.However,the theoretical research of SACs is relatively fragmented,which restricts further understanding of SAC stability and activity.To address this issue,we report our analysis of the geometric structures,electronic characteristics,stabilities,catalytic activities,and descriptors of 132 graphene-based singleatom catalysts(M/GS)obtained from density functional theory calculations.Based on the calculated formation and binding energies,a stability map of M/GS was established to guide catalyst synthesis.The effects of metal atoms and support on the charge of metal atoms are discussed.The catalytic activities of M/GS in both nitrogen and oxygen reduction reactions are predicted based on the calculated magnetic moment and the adsorption energy.Combined with the electronegativity and d-band center,a two-dimensional descriptor is proposed to predict the O adsorption energy on M/GS.More importantly,this theoretical study provides predictive guidance for the preparation and rational design of highly stable and active single-atom catalysts using nitrogen doping on graphene. 展开更多
关键词 single-atom catalyst GRAPHENE Stability Activity Density functional theory Reaction descriptor
下载PDF
石墨烯负载Pt催化剂的制备及对甲酸的电催化氧化
11
作者 陈体伟 田甜 +2 位作者 薛茗月 李玉郷 孟成 《许昌学院学报》 CAS 2024年第2期54-57,共4页
采用恒电位电化学还原技术制得石墨烯电极,然后采用循环伏安方法在石墨烯基体上电沉积一层Pt纳米微粒.采用电化学测试技术研究Pt/石墨烯电极材料的电子传递性能及对甲酸电催化氧化性能.相对于商用Pt电极材料,Pt纳米微粒/石墨烯电极材料... 采用恒电位电化学还原技术制得石墨烯电极,然后采用循环伏安方法在石墨烯基体上电沉积一层Pt纳米微粒.采用电化学测试技术研究Pt/石墨烯电极材料的电子传递性能及对甲酸电催化氧化性能.相对于商用Pt电极材料,Pt纳米微粒/石墨烯电极材料对甲酸表现出优异的电催化氧化活性,氧化峰电流显著提高.该种石墨烯负载Pt催化剂有望用作直接甲酸燃料电池的优良电极材料. 展开更多
关键词 石墨烯 直接甲酸燃料电池 铂催化剂 循环伏安法 电催化氧化
下载PDF
General approach for atomically dispersed precious metal catalysts toward hydrogen reaction 被引量:2
12
作者 Ruisong Li Daoxiong Wu +8 位作者 Peng Rao Peilin Deng Jing Li Junming Luo Wei Huang Qi Chen Zhenye Kang Yijun Shen Xinlong Tian 《Carbon Energy》 SCIE CSCD 2023年第7期100-111,共12页
As a carbon-free energy carrier,hydrogen has become the pivot for future clean energy,while efficient hydrogen production and combustion still require precious metal-based catalysts.Single-atom catalysts(SACs)with hig... As a carbon-free energy carrier,hydrogen has become the pivot for future clean energy,while efficient hydrogen production and combustion still require precious metal-based catalysts.Single-atom catalysts(SACs)with high atomic utilization open up a desirable perspective for the scale applications of precious metals,but the general and facile preparation of various precious metal-based SACs remains challenging.Herein,a general movable printing method has been developed to synthesize various precious metal-based SACs,such as Pd,Pt,Rh,Ir,and Ru,and the features of highly dispersed single atoms with nitrogen coordination have been identified by comprehensive characterizations.More importantly,the synthesized Pt-and Ru-based SACs exhibit much higher activities than their corresponding nanoparticle counterparts for hydrogen oxidation reaction and hydrogen evolution reaction(HER).In addition,the Pd-based SAC delivers an excellent activity for photocatalytic hydrogen evolution.Especially for the superior mass activity of Ru-based SACs toward HER,density functional theory calculations confirmed that the adsorption of the hydrogen atom has a significant effect on the spin state and electronic structure of the catalysts. 展开更多
关键词 hydrogen evolution reaction hydrogen oxidation reaction photocatalytic hydrogen evolution reaction precious metals single-atom catalysts
下载PDF
Al_(2)O_(3)负载Pt基催化剂表面动态变化的谱学研究 被引量:1
13
作者 何念秋 郑燕萍 陈明树 《分子催化(中英文)》 CAS CSCD 北大核心 2024年第1期7-16,I0001,共11页
明确多相催化剂表面在反应过程的动态变化对催化剂的优化、设计有重要意义.我们通过控制Pt的不同负载量制备了一系列Al_(2)O_(3)负载的Pt/Al_(2)O_(3)催化剂,利用X-射线衍射、X-光电子能谱、球差扫描电镜、CO-探针的红外光谱、低能离子... 明确多相催化剂表面在反应过程的动态变化对催化剂的优化、设计有重要意义.我们通过控制Pt的不同负载量制备了一系列Al_(2)O_(3)负载的Pt/Al_(2)O_(3)催化剂,利用X-射线衍射、X-光电子能谱、球差扫描电镜、CO-探针的红外光谱、低能离子散射谱、程序升温氧化和拉曼光谱等研究Pt/Al_(2)O_(3)的表面结构和反应过程中的变化,以丙烷直接脱氢(PDH)反应为探针,考察反应过程存在“诱导”期的表面动态变化,特别是表面积碳、表面形貌、活性位点等的演化.进而与其催化反应性能关联,发现Pt纳米粒子(NP)和团簇上丙烷易深度脱氢或断裂C-C键生成CH_(4)的同时形成积碳、随后失去活性;而孤立的Pt单原子位点(SAC)上不易生成积碳、是丙烯生成的关键活性位. 展开更多
关键词 表面动态过程 原位表征 丙烷脱氢 pt基催化剂 单原子催化剂
下载PDF
Advances on Axial Coordination Design of Single‑Atom Catalysts for Energy Electrocatalysis:A Review 被引量:1
14
作者 Linjie Zhang Na Jin +4 位作者 Yibing Yang Xiao‑Yong Miao Hua Wang Jun Luo Lili Han 《Nano-Micro Letters》 SCIE EI CAS CSCD 2023年第12期188-230,共43页
Single-atom catalysts(SACs)have garnered increasingly growing attention in renewable energy scenarios,especially in electrocatalysis due to their unique high efficiency of atom utilization and flexible electronic stru... Single-atom catalysts(SACs)have garnered increasingly growing attention in renewable energy scenarios,especially in electrocatalysis due to their unique high efficiency of atom utilization and flexible electronic structure adjustability.The intensive efforts towards the rational design and synthesis of SACs with versatile local configurations have significantly accelerated the development of efficient and sustainable electrocatalysts for a wide range of electrochemical applications.As an emergent coordination avenue,intentionally breaking the planar symmetry of SACs by adding ligands in the axial direction of metal single atoms offers a novel approach for the tuning of both geometric and electronic structures,thereby enhancing electrocatalytic performance at active sites.In this review,we briefly outline the burgeoning research topic of axially coordinated SACs and provide a comprehensive summary of the recent advances in their synthetic strategies and electrocatalytic applications.Besides,the challenges and outlooks in this research field have also been emphasized.The present review provides an in-depth and comprehensive understanding of the axial coordination design of SACs,which could bring new perspectives and solutions for fine regulation of the electronic structures of SACs catering to high-performing energy electrocatalysis. 展开更多
关键词 single-atom catalyst Axial coordination Synthetic strategy Electrocatalytic application
下载PDF
Dual atomic catalysts from COF-derived carbon for CO_(2)RR by suppressing HER through synergistic effects 被引量:1
15
作者 Minghao Liu Sijia Liu +7 位作者 Qing Xu Qiyang Miao Shuai Yang Svenja Hanson George Zheng Chen Jun He Zheng Jiang Gaofeng Zeng 《Carbon Energy》 SCIE CSCD 2023年第6期92-103,共12页
The electrochemical carbon dioxide reduction reaction(CO_(2)RR)for highvalue-added products is a promising strategy to tackle excessive CO_(2) emissions.However,the activity of and selectivity for catalysts for CO_(2)... The electrochemical carbon dioxide reduction reaction(CO_(2)RR)for highvalue-added products is a promising strategy to tackle excessive CO_(2) emissions.However,the activity of and selectivity for catalysts for CO_(2)RR still need to be improved because of the competing reaction(hydrogen evolution reaction).In this study,for the first time,we have demonstrated dual atomic catalytic sites for CO_(2)RR from a core-shell hybrid of the covalent-organic framework and the metal-organic framework.Due to abundant dual atomic sites(with CoN_(4)O and ZnN_(4) of 2.47 and 11.05 wt.%,respectively)on hollow carbon,the catalyst promoted catalysis of CO_(2)RR,with the highest Faradic efficiency for CO of 92.6%at-0.8 V and a turnover frequency value of 1370.24 h^(-1) at-1.0 V.More importantly,the activity and selectivity of the catalyst were well retained for 30 h.The theoretical calculation further revealed that CoN_(4)O was the main site for CO_(2)RR,and the activity of and selectivity for Zn sites were also improved because of the synergetic roles. 展开更多
关键词 carbon dioxide reduction reaction covalent-organic frameworks dual atomic catalysts metal-organic frameworks single-atom catalysts
下载PDF
高电位下PEMFC阴极催化层Pt对碳腐蚀的影响
16
作者 刘明俊 周芬 +3 位作者 朱振 黄鹏涛 姚志鹏 潘牧 《电源技术》 CAS 北大核心 2024年第6期1003-1010,共8页
结合非色散红外光谱(NDIR)和电化学表征的方法研究了质子交换膜燃料电池阴极催化层在0.8 V恒电位下,碳腐蚀的变化规律及其对Pt氧化过程的依赖性。研究发现0.8 V恒电位下,Pt会导致碳载体的腐蚀更加剧烈。运行100 h后,Pt/C电极的碳损失质... 结合非色散红外光谱(NDIR)和电化学表征的方法研究了质子交换膜燃料电池阴极催化层在0.8 V恒电位下,碳腐蚀的变化规律及其对Pt氧化过程的依赖性。研究发现0.8 V恒电位下,Pt会导致碳载体的腐蚀更加剧烈。运行100 h后,Pt/C电极的碳损失质量达到8.7%,是纯碳电极的3.5倍。Pt/C电极的碳腐蚀规律可以分为三个阶段,第一阶段呈对数增长,第三阶段呈线性增长,中间存在混合增长区。而Pt氧化物累积量分析表明Pt的氧化呈现出两段对数关系,且中间存在一个过渡区,这解释了碳腐蚀的三段规律。活跃的Pt-OH催化碳腐蚀,并快速转化成PtO_(x)等惰性氧化物,大幅降低对碳腐蚀的促进作用,当Pt-OH含量稳定后,碳腐蚀速率达到稳态。电位阶跃工况下,Pt氧化物增长速度明显降低,碳载体质量损失达到了15.55%,几乎是恒电位工况的2倍,表明控制Pt氧化物累积速度会加速碳载体的腐蚀。 展开更多
关键词 碳载体腐蚀 0.8 V恒电位 pt催化剂 pt氧化物
下载PDF
Secondary-Atom-Doping Enables Robust Fe-N-C Single-Atom Catalysts with Enhanced Oxygen Reduction Reaction 被引量:9
17
作者 Xin Luo Xiaoqian Wei +5 位作者 Hengjia Wang Wenling Gu Takuma Kaneko Yusuke Yoshida Xiao Zhao Chengzhou Zhu 《Nano-Micro Letters》 SCIE EI CAS CSCD 2020年第11期281-291,共11页
Single-atom catalysts(SACs) with nitrogen-coordinated nonprecious metal sites have exhibited inimitable advantages in electrocatalysis.However,a large room for improving their activity and durability remains.Herein,we... Single-atom catalysts(SACs) with nitrogen-coordinated nonprecious metal sites have exhibited inimitable advantages in electrocatalysis.However,a large room for improving their activity and durability remains.Herein,we construct atomically dispersed Fe sites in N-doped carbon supports by secondary-atom-doped strategy.Upon the secondary doping,the density and coordination environment of active sites can be efficiently tuned,enabling the simultaneous improvement in the number and reactivity of the active site.Besides,structure optimizations in terms of the enlarged surface area and improved hydrophilicity can be achieved simultaneously.Due to the beneficial microstructure and abundant highly active FeN_5 moieties resulting from the secondary doping,the resultant catalyst exhibits an admirable half-wave potential of 0.81 V versus 0.83 V for Pt/C and much better stability than Pt/C in acidic media.This work would offer a general strategy for the design and preparation of highly active SACs for electrochemical energy devices. 展开更多
关键词 single-atom catalysts Fe-N-C catalysts DOPING Porous nanostructures Oxygen reduction reaction
下载PDF
Physicochemical and isomerization property of Pt/SAPO-11 catalysts promoted by rare earths 被引量:5
18
作者 刘维桥 尚通明 +2 位作者 周全发 任杰 孙予罕 《Journal of Rare Earths》 SCIE EI CAS CSCD 2009年第6期937-942,共6页
Monometallic catalyst Pt/SAPO-11 was prepared by impregnation method.Bimetallic catalysts LaPt/SAPO-11 or CePt/SAPO-11 was prepared by sequential impregnation method.The catalysts were characterized by X-ray diffracti... Monometallic catalyst Pt/SAPO-11 was prepared by impregnation method.Bimetallic catalysts LaPt/SAPO-11 or CePt/SAPO-11 was prepared by sequential impregnation method.The catalysts were characterized by X-ray diffraction(XRD),nitrogen adsorption,temperature-programmed desorption of ammonia(NH3-TPD),and Fourier transform infrared spectroscopy(FT-IR) techniques.The results showed that with the addition of rare earths the BET surface areas,pore volume,the amount of Bronsted acid and the total acidity of catalys... 展开更多
关键词 pt/SAPO-11 catalyst N-HEptANE HYDROISOMERIZATION rare earths
下载PDF
Engineering the Coordination Sphere of Isolated Active Sites to Explore the Intrinsic Activity in Single-Atom Catalysts 被引量:10
19
作者 Xin Wu Huabin Zhang +4 位作者 Shouwei Zuo Juncai Dong Yang Li Jian Zhang Yu Han 《Nano-Micro Letters》 SCIE EI CAS CSCD 2021年第9期136-163,共28页
Reducing the dimensions of metallic nanoparticles to isolated,single atom has attracted considerable attention in heterogeneous catalysis,because it significantly improves atomic utilization and often leads to distinc... Reducing the dimensions of metallic nanoparticles to isolated,single atom has attracted considerable attention in heterogeneous catalysis,because it significantly improves atomic utilization and often leads to distinct catalytic performance.Through extensive research,it has been recognized that the local coordination environment of single atoms has an important influence on their electronic structures and catalytic behaviors.In this review,we summarize a series of representative systems of single-atom catalysts,discussing their preparation,characterization,and structure-property relationship,with an emphasis on the correlation between the coordination spheres of isolated reactive centers and their intrinsic catalytic activities.We also share our perspectives on the current challenges and future research promises in the development of single-atom catalysis.With this article,we aim to highlight the possibility of finely tuning the catalytic performances by engineering the coordination spheres of single-atom sites and provide new insights into the further development for this emerging research field. 展开更多
关键词 Isolated atoms Coordination sphere Intrinsic activity single-atom catalysts
下载PDF
Transition metal-based single-atom catalysts(TM-SACs);rising materials for electrochemical CO_(2) reduction 被引量:6
20
作者 Bishnupad Mohanty Suddhasatwa Basu Bikash Kumar Jena 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2022年第7期444-471,I0012,共29页
The continuous increase of global atmospheric CO_(2) concentrations brutally damages our environment. A series of methods have been developed to convert CO_(2) to valuable fuels and value-added chemicals to maintain t... The continuous increase of global atmospheric CO_(2) concentrations brutally damages our environment. A series of methods have been developed to convert CO_(2) to valuable fuels and value-added chemicals to maintain the equilibrium of carbon cycles. The electrochemical CO_(2) reduction reaction(CO_(2)RR) is one of the promising methods to produce fuels and chemicals, and it could offer sustainable paths to decrease carbon intensity and support renewable energy. Thus, significant research efforts and highly efficient catalysts are essential for converting CO_(2) into other valuable chemicals and fuels. Transition metal-based single atoms catalysts(TM-SACs) have recently received much attention and offer outstanding electrochemical applications with high activity and selectivity opportunities. By taking advantage of both heterogeneous and homogeneous catalysts, TM-SACs are the new rising star for electrochemical conversion of CO_(2) to the value-added product with high selectivity. In recent years, enormous research effort has been made to synthesize different TM-SACs with different M–Nxsites and study the electrochemical conversion of CO_(2) to CO. This review has discussed the development and characterization of different TMSACs with various catalytic sites, fundamental understanding of the electrochemical process in CO_(2) RR,intrinsic catalytic activity, and molecular strategics of SACs responsible for CO_(2)RR. Furthermore, we extensively review previous studies on 1 st-row transition metals TM-SACs(Ni, Co, Fe, Cu, Zn, Sn) and dual-atom catalysts(DACs) utilized for electrochemical CO_(2) conversions and highlight the opportunities and challenges. 展开更多
关键词 CO_(2)RR single-atom catalyst SACs Dual-atom catalyst DACs Transition metals Support catalysts
下载PDF
上一页 1 2 62 下一页 到第
使用帮助 返回顶部