The catalyst layers(CLs) electrode is the key component of the membrane electrode assembly(MEA) in proton exchange membrane fuel cells(PEMFCs). Conventional electrodes for PEMFCs are composed of carbon-supported, iono...The catalyst layers(CLs) electrode is the key component of the membrane electrode assembly(MEA) in proton exchange membrane fuel cells(PEMFCs). Conventional electrodes for PEMFCs are composed of carbon-supported, ionomer, and Pt nanoparticles, all immersed together and sprayed with a micron-level thickness of CLs. They have a performance trade-off where increasing the Pt loading leads to higher performance of abundant triple-phase boundary areas but increases the electrode cost. Major challenges must be overcome before realizing its wide commercialization. Literature research revealed that it is impossible to achieve performance and durability targets with only high-performance catalysts, so the controllable design of CLs architecture in MEAs for PEMFCs must now be the top priority to meet industry goals. From this perspective, a 3D ordered electrode circumvents this issue with a support-free architecture and ultrathin thickness while reducing noble metal Pt loadings. Herein, we discuss the motivation in-depth and summarize the necessary CLs structural features for designing ultralow Pt loading electrodes. Critical issues that remain in progress for 3D ordered CLs must be studied and characterized. Furthermore, approaches for 3D ordered CLs architecture electrode development, involving material design, structure optimization, preparation technology, and characterization techniques, are summarized and are expected to be next-generation CLs for PEMFCs. Finally, the review concludes with perspectives on possible research directions of CL architecture to address the significant challenges in the future.展开更多
LaNiO3 (LNO) thin films were prepared on Pt(111) / Ti / SiO2 / Si substrate by metal-organic decomposition (MOD) method. Pb(Zr,Ti)O3 ferroelectric thin films and their compositionally graded thin films were prepared o...LaNiO3 (LNO) thin films were prepared on Pt(111) / Ti / SiO2 / Si substrate by metal-organic decomposition (MOD) method. Pb(Zr,Ti)O3 ferroelectric thin films and their compositionally graded thin films were prepared on LNO / Pt / Ti / SiO2 /Si substrates by Sol-gel method. The composition depth profile of a typical up-graded film was determined by using a combination of Auger Electron Spectroscopy (ASE) and Ar Ion Etching. The results confirm that the processing method produces graded composition changes. XRD analysis showed that the graded thin films possessed composite structure of tetragonal and rhombohedral. The dielectric constants of Up-graded and Down-graded thin films were higher than that of each thin film unit. The dielectric constants were 277 and 269 at 10 kHz, respectively. The loss tangents were 0.019 and 0.018 at 10 kHz, respectively. The Hysteresis loops showed that the remanent polarizations of graded thin films were higher than that of each thin film unit, but the coercive fields were smaller. The remanent polarizations of Up-graded and Down-graded thin films were 30.06 and 26.96 μC·cm-2, respectively. The coercive fields were 54.14, 54.23 kV·cm-1, respectively. The pyroelectric coefficients of Up-graded and Down-graded thin films were 4.62, 2.51×10-8 C·cm-2·K-1 at room temperature, respectively. They were higher than that of each thin film unit.展开更多
The electrochemical reduction of carbon dioxide was investigated on nickel and platinum electrodes in 0.5 mol dm^-3 KHCO3 solutions. The main products were formic acid and carbon monoxide during the electroreduction o...The electrochemical reduction of carbon dioxide was investigated on nickel and platinum electrodes in 0.5 mol dm^-3 KHCO3 solutions. The main products were formic acid and carbon monoxide during the electroreduction of CO2, and the Faradaic efficiency for this process depended on the characteristics of the electrode. At ambient temperature and pressure, the Faradaic efficiency was measured to be 8.6% and 2.5 % respectively for the production of formic acid and CO with Pt electrode at - 1.3V vs Ag/AgCl (saturated KCl). At this same potential, the Faradaic efficiency was measured to be 8.9% and 1.7% respectively with Ni electrode. Tafel plots showed that the electrochemical reduction of CO2 was not limited by the mass transfer process in the range of -0.8 to - 1.2V vs Ag/AgCl (saturated KCl).展开更多
Chromium oxide nanoparticles were synthesized by the reduction of potassium dichromate solution with Mukia Maderaspatana plant extract. In electrochemical methods, Cr2O3 nanoparticles were synthesized by two ways, usi...Chromium oxide nanoparticles were synthesized by the reduction of potassium dichromate solution with Mukia Maderaspatana plant extract. In electrochemical methods, Cr2O3 nanoparticles were synthesized by two ways, using platinum (Pt) electrodes and K2Cr2O7 solution with H2SO4 as medium in the first case. And chromium doped platinum electrode (Pt/Cr) in presence of NaHCO3 solution in second case. The resulting Cr2O3 nanoparticles were characterized by X-ray diffraction (XRD), Scanning electron microscopy (SEM), UV-VIS absorption and Fourier-transform infrared (FTIR) spectroscopy. The enhancing influence of Cr2O3 nanoparticles as a catalyst for the decomposition of KMnO4 has been studied. The antibacterial effect of Cr2O3 nanoparticles against E. coli was investigated. These particles were shown to have an effective bactericide.展开更多
基金funded by the Natural Science Foundation of Shandong Province, China (ZR2023MB049)the China Postdoctoral Science Foundation (2020M670483)the Science Foundation of Weifang University (2023BS11)。
文摘The catalyst layers(CLs) electrode is the key component of the membrane electrode assembly(MEA) in proton exchange membrane fuel cells(PEMFCs). Conventional electrodes for PEMFCs are composed of carbon-supported, ionomer, and Pt nanoparticles, all immersed together and sprayed with a micron-level thickness of CLs. They have a performance trade-off where increasing the Pt loading leads to higher performance of abundant triple-phase boundary areas but increases the electrode cost. Major challenges must be overcome before realizing its wide commercialization. Literature research revealed that it is impossible to achieve performance and durability targets with only high-performance catalysts, so the controllable design of CLs architecture in MEAs for PEMFCs must now be the top priority to meet industry goals. From this perspective, a 3D ordered electrode circumvents this issue with a support-free architecture and ultrathin thickness while reducing noble metal Pt loadings. Herein, we discuss the motivation in-depth and summarize the necessary CLs structural features for designing ultralow Pt loading electrodes. Critical issues that remain in progress for 3D ordered CLs must be studied and characterized. Furthermore, approaches for 3D ordered CLs architecture electrode development, involving material design, structure optimization, preparation technology, and characterization techniques, are summarized and are expected to be next-generation CLs for PEMFCs. Finally, the review concludes with perspectives on possible research directions of CL architecture to address the significant challenges in the future.
文摘LaNiO3 (LNO) thin films were prepared on Pt(111) / Ti / SiO2 / Si substrate by metal-organic decomposition (MOD) method. Pb(Zr,Ti)O3 ferroelectric thin films and their compositionally graded thin films were prepared on LNO / Pt / Ti / SiO2 /Si substrates by Sol-gel method. The composition depth profile of a typical up-graded film was determined by using a combination of Auger Electron Spectroscopy (ASE) and Ar Ion Etching. The results confirm that the processing method produces graded composition changes. XRD analysis showed that the graded thin films possessed composite structure of tetragonal and rhombohedral. The dielectric constants of Up-graded and Down-graded thin films were higher than that of each thin film unit. The dielectric constants were 277 and 269 at 10 kHz, respectively. The loss tangents were 0.019 and 0.018 at 10 kHz, respectively. The Hysteresis loops showed that the remanent polarizations of graded thin films were higher than that of each thin film unit, but the coercive fields were smaller. The remanent polarizations of Up-graded and Down-graded thin films were 30.06 and 26.96 μC·cm-2, respectively. The coercive fields were 54.14, 54.23 kV·cm-1, respectively. The pyroelectric coefficients of Up-graded and Down-graded thin films were 4.62, 2.51×10-8 C·cm-2·K-1 at room temperature, respectively. They were higher than that of each thin film unit.
基金Supported by the National Natural Science Foundation of China (No. 50408024) and Zhejiang Provincial Natural Science Fotmdation of China (No M203034 ).
文摘The electrochemical reduction of carbon dioxide was investigated on nickel and platinum electrodes in 0.5 mol dm^-3 KHCO3 solutions. The main products were formic acid and carbon monoxide during the electroreduction of CO2, and the Faradaic efficiency for this process depended on the characteristics of the electrode. At ambient temperature and pressure, the Faradaic efficiency was measured to be 8.6% and 2.5 % respectively for the production of formic acid and CO with Pt electrode at - 1.3V vs Ag/AgCl (saturated KCl). At this same potential, the Faradaic efficiency was measured to be 8.9% and 1.7% respectively with Ni electrode. Tafel plots showed that the electrochemical reduction of CO2 was not limited by the mass transfer process in the range of -0.8 to - 1.2V vs Ag/AgCl (saturated KCl).
文摘Chromium oxide nanoparticles were synthesized by the reduction of potassium dichromate solution with Mukia Maderaspatana plant extract. In electrochemical methods, Cr2O3 nanoparticles were synthesized by two ways, using platinum (Pt) electrodes and K2Cr2O7 solution with H2SO4 as medium in the first case. And chromium doped platinum electrode (Pt/Cr) in presence of NaHCO3 solution in second case. The resulting Cr2O3 nanoparticles were characterized by X-ray diffraction (XRD), Scanning electron microscopy (SEM), UV-VIS absorption and Fourier-transform infrared (FTIR) spectroscopy. The enhancing influence of Cr2O3 nanoparticles as a catalyst for the decomposition of KMnO4 has been studied. The antibacterial effect of Cr2O3 nanoparticles against E. coli was investigated. These particles were shown to have an effective bactericide.