商业Pt/C是最常用的析氢催化剂,但其成本高昂,储量有限,因此降低Pt负载量以降低成本是实现长久发展的关键。在Pt中引入其它金属组分对催化剂进行表面修饰等是当下对Pt基纳米催化剂表面改性的研究热点。本论文以酸处理的科琴黑为载体,氯...商业Pt/C是最常用的析氢催化剂,但其成本高昂,储量有限,因此降低Pt负载量以降低成本是实现长久发展的关键。在Pt中引入其它金属组分对催化剂进行表面修饰等是当下对Pt基纳米催化剂表面改性的研究热点。本论文以酸处理的科琴黑为载体,氯亚铂酸钾和硝酸镍为主要金属催化剂前驱体,通过超声辅助还原法将金属离子Pt2+和Ni2+还原为PtNi合金,并以纳米团簇的形式沉积于载体上,成功制备出高效、稳定的酸处理PtNi纳米团簇催化剂(PtNiNC-acid)。研究发现,当电流密度为50 mA cm−2时,PtNiNC-acid的过电位为33 mV;PtNiNC-acid在10 mA cm−2和100 mA cm−2的电流密度下,分别具有55 h和45 h的优良稳定性,这证明了PtNiNC-acid在碱性溶液中具有较高的HER活性和稳定性。Commercial Pt/C is the most commonly used hydrogen evolution catalyst, but its cost is high and its reserves are limited, so reducing Pt load to reduce costs is the key to achieve long-term development. The introduction of other metal components in Pt to modify the surface of the catalyst is the current research focus on the surface modification of Pt based nano-catalyst. In this paper, acid treated Keqin black as the carrier, potassium chlorophosphite and nickel nitrate as the main metal catalyst precursor, the metal ions Pt2+ and Ni2+ were reduced to PtNi alloy by ultrasonic assisted reduction method, and deposited on the carrier in the form of nano-clusters. An efficient and stable acid-treated PtNi nanocluster catalyst (PtNiNC-acid) was successfully prepared. It was found that the overpotential of PtNiNC-acid was 33 mV when the current density was 50 mA cm−2. The excellent stability of PtNiNC-acid at the current densities of 10 mA cm−2 and 100 mA cm−2 for 55 h and 45 h, respectively, proves that PtNiNC-acid has high HER activity and stability in alkaline solutions.展开更多
文摘商业Pt/C是最常用的析氢催化剂,但其成本高昂,储量有限,因此降低Pt负载量以降低成本是实现长久发展的关键。在Pt中引入其它金属组分对催化剂进行表面修饰等是当下对Pt基纳米催化剂表面改性的研究热点。本论文以酸处理的科琴黑为载体,氯亚铂酸钾和硝酸镍为主要金属催化剂前驱体,通过超声辅助还原法将金属离子Pt2+和Ni2+还原为PtNi合金,并以纳米团簇的形式沉积于载体上,成功制备出高效、稳定的酸处理PtNi纳米团簇催化剂(PtNiNC-acid)。研究发现,当电流密度为50 mA cm−2时,PtNiNC-acid的过电位为33 mV;PtNiNC-acid在10 mA cm−2和100 mA cm−2的电流密度下,分别具有55 h和45 h的优良稳定性,这证明了PtNiNC-acid在碱性溶液中具有较高的HER活性和稳定性。Commercial Pt/C is the most commonly used hydrogen evolution catalyst, but its cost is high and its reserves are limited, so reducing Pt load to reduce costs is the key to achieve long-term development. The introduction of other metal components in Pt to modify the surface of the catalyst is the current research focus on the surface modification of Pt based nano-catalyst. In this paper, acid treated Keqin black as the carrier, potassium chlorophosphite and nickel nitrate as the main metal catalyst precursor, the metal ions Pt2+ and Ni2+ were reduced to PtNi alloy by ultrasonic assisted reduction method, and deposited on the carrier in the form of nano-clusters. An efficient and stable acid-treated PtNi nanocluster catalyst (PtNiNC-acid) was successfully prepared. It was found that the overpotential of PtNiNC-acid was 33 mV when the current density was 50 mA cm−2. The excellent stability of PtNiNC-acid at the current densities of 10 mA cm−2 and 100 mA cm−2 for 55 h and 45 h, respectively, proves that PtNiNC-acid has high HER activity and stability in alkaline solutions.