Pt/Eu2O3-CeO2 materials with different Eu concentrations were prepared and applied to toluene destruction,and the remarkable promotion impact of EuOx on Pt/CeO2 can be observed.The characterization results reveal that...Pt/Eu2O3-CeO2 materials with different Eu concentrations were prepared and applied to toluene destruction,and the remarkable promotion impact of EuOx on Pt/CeO2 can be observed.The characterization results reveal that the presence of EuOx significantly enhances the redox property,lattice O concentration,and Ce3+ ratio of the Pt/CeO2 material,which facilitates the dispersion and activity of Pt active sites and thus accelerates the decomposition process of toluene.Among all catalysts,a sample with an Eu content of 2.5 at.%(Pt/EC-2.5)possesses the best catalytic activity with 0.09 vol% of toluene completely destructed at 200 ℃ under a relatively high GHSV of 50000 h^-1.The possible reaction pathway and mechanism of toluene combustion over Pt/Eu2O3-CeO2 samples are presented according to in-situ DRIFTS,which confirms that the toluene oxidation process obeys the Mars-van Krevelen mechanism with aldehydes and ketones as primary organic intermediates.展开更多
Several Pt-θ-Al_2O_3 catalysts with similar ultra-low Cl contents were used to investigate the influence of dechlorination temperature on propane dehydrogenation reaction. The Pt-θ-Al_2O_3 catalyst treated at a high...Several Pt-θ-Al_2O_3 catalysts with similar ultra-low Cl contents were used to investigate the influence of dechlorination temperature on propane dehydrogenation reaction. The Pt-θ-Al_2O_3 catalyst treated at a highest dechlorination temperature showed a lowest propane rate and propylene selectivity. The scanning transmission electron microscopy showed that the dispersions of Pt nanoparticles decreased with an increasing dechlorination temperature. The temperature-programmed reduction analysis showed that higher dechlorination temperature could lead to strong interactions between the metal and support, making it difficult to reduce Pt nanoparticles. The temperature-programmed oxidation analysis implied that more coke was deposited on the metal for catalyst treated at higher dechlorination temperature. The Raman spectra and the H/C ratio showed that more side-reactions, such as cracking and severe deep dehydrogenation reactions, occurred on catalysts treated at higher dechlorination temperatures. Therefore, the lower the dispersion of Pt nanoparticles was, the stronger the metal-support interactions and increased side-reactions would be, resulting in lower catalytic activity for Pt-θ-Al_2O_3 treated with higher dechlorination temperature.展开更多
The CO-NO catalytic reaction on body-centred cubic (bcc) lattice is studied by Monte Carlo simulation. The simple Langmuir-Hinshelwood (LH) mechanism yields a steady reactive window, which is separated by continuo...The CO-NO catalytic reaction on body-centred cubic (bcc) lattice is studied by Monte Carlo simulation. The simple Langmuir-Hinshelwood (LH) mechanism yields a steady reactive window, which is separated by continuous and discontinuous irreversible phase transitions. The effect of precursor mechanism on the phase diagram of the system is also studied. According to this mechanism, the precursor motion of CO molecules is considered only on the surface of bcc lattice. Some interesting observations are reported.展开更多
The dynamical behavior of surface catalytic oxidation reaction of Pt(110)/CO+O2 modulated by colored noise, under the condition of specific temperature, has been investigated when the partial pressure of CO gas is nea...The dynamical behavior of surface catalytic oxidation reaction of Pt(110)/CO+O2 modulated by colored noise, under the condition of specific temperature, has been investigated when the partial pressure of CO gas is near the supercritical Hopf bifurcation point. By computer simulation the oscillation and stochastic resonance induced by colored noise are observed. The influences of the intensity and correlation time of colored noise on stochastic resonance are discussed. The range of sensitivity of the system to the environmental fluctuation is analyzed.展开更多
基金financially supported by the National Key R&D Program of China (2016YFC0204201)the National Natural Science Foundation of China (21677114, 21477095, 21876139)the Fundamental Research Funds for the Central Universities (xjj2017170)~~
文摘Pt/Eu2O3-CeO2 materials with different Eu concentrations were prepared and applied to toluene destruction,and the remarkable promotion impact of EuOx on Pt/CeO2 can be observed.The characterization results reveal that the presence of EuOx significantly enhances the redox property,lattice O concentration,and Ce3+ ratio of the Pt/CeO2 material,which facilitates the dispersion and activity of Pt active sites and thus accelerates the decomposition process of toluene.Among all catalysts,a sample with an Eu content of 2.5 at.%(Pt/EC-2.5)possesses the best catalytic activity with 0.09 vol% of toluene completely destructed at 200 ℃ under a relatively high GHSV of 50000 h^-1.The possible reaction pathway and mechanism of toluene combustion over Pt/Eu2O3-CeO2 samples are presented according to in-situ DRIFTS,which confirms that the toluene oxidation process obeys the Mars-van Krevelen mechanism with aldehydes and ketones as primary organic intermediates.
基金financially supported by grants from the State Key Laboratory of Catalytic Materials and Reaction Engineering (RIPP, SINOPEC)the National Natural Science Foundation of China (Grant No. 21706036)+2 种基金the Natural Science Foundation of Fujian Province (Grant No. 2018J05019)the Fujian Educational Bureau (Grant No. JAT170073)the Talent Foundation of Fuzhou University (Grant No. XRC-1650)
文摘Several Pt-θ-Al_2O_3 catalysts with similar ultra-low Cl contents were used to investigate the influence of dechlorination temperature on propane dehydrogenation reaction. The Pt-θ-Al_2O_3 catalyst treated at a highest dechlorination temperature showed a lowest propane rate and propylene selectivity. The scanning transmission electron microscopy showed that the dispersions of Pt nanoparticles decreased with an increasing dechlorination temperature. The temperature-programmed reduction analysis showed that higher dechlorination temperature could lead to strong interactions between the metal and support, making it difficult to reduce Pt nanoparticles. The temperature-programmed oxidation analysis implied that more coke was deposited on the metal for catalyst treated at higher dechlorination temperature. The Raman spectra and the H/C ratio showed that more side-reactions, such as cracking and severe deep dehydrogenation reactions, occurred on catalysts treated at higher dechlorination temperatures. Therefore, the lower the dispersion of Pt nanoparticles was, the stronger the metal-support interactions and increased side-reactions would be, resulting in lower catalytic activity for Pt-θ-Al_2O_3 treated with higher dechlorination temperature.
文摘The CO-NO catalytic reaction on body-centred cubic (bcc) lattice is studied by Monte Carlo simulation. The simple Langmuir-Hinshelwood (LH) mechanism yields a steady reactive window, which is separated by continuous and discontinuous irreversible phase transitions. The effect of precursor mechanism on the phase diagram of the system is also studied. According to this mechanism, the precursor motion of CO molecules is considered only on the surface of bcc lattice. Some interesting observations are reported.
基金This work was supported by the National Natural Science Foundation of China(Grant Nos.20173052 and 2020301).
文摘The dynamical behavior of surface catalytic oxidation reaction of Pt(110)/CO+O2 modulated by colored noise, under the condition of specific temperature, has been investigated when the partial pressure of CO gas is near the supercritical Hopf bifurcation point. By computer simulation the oscillation and stochastic resonance induced by colored noise are observed. The influences of the intensity and correlation time of colored noise on stochastic resonance are discussed. The range of sensitivity of the system to the environmental fluctuation is analyzed.