Kinetics of dissociative O2 adsorption, OHad desorption, and oxygen reduction reaction (ORR) at Pt(111) electrode in 0.1 mol/L HClO4 has been investigated. Reversible OHad adsorption/desorption occurs at potential...Kinetics of dissociative O2 adsorption, OHad desorption, and oxygen reduction reaction (ORR) at Pt(111) electrode in 0.1 mol/L HClO4 has been investigated. Reversible OHad adsorption/desorption occurs at potentials from 0.6 V to 1.0 V (vs. RHE) with the exchange current density of ca. 50 mA/cm^2 at 0.8 V, the fast kinetics of OHad desorption indicates that it should not be the rate determining step for ORR. In the kineticor kinetic-mass transport mix controlled potential region, ORR current at constant potential displays slight decrease with reaction time. ORR current in the positive-going potential scan is slightly larger than that in the subsequent negative-going scan with electrode rotation speed (〉800 r/min) and slow potential scan rate (〈100 mV/s). The open circuit potential of Pt/0.1 mol/L HClO4 interface increases promptly from 0.9 V to 1.0 V after switch from O2 free- to O2-saturated solution. The increase of open circuit potential as well as ORR current decays under potential control due to the accumulation of OHad from dissociative adsorption of O2. It indicates that at Pt(111) the net rate for O2 decomposition to OHad is slightly faster than that for OHad removal, one cannot simply use the assumption of rate determining step to discuss ORR kinetics. Instead, the ORR kinetics is determined by both the kinetics for O2 decomposition to OHad as well as the thermo-equilibrium of OHad+H^++e→←H2O.展开更多
Fast scan voltammetry is an efficient tool to distinguish oxidative/reductive adsorp- tion/desorption from that for bulk reaction. In this work, we provide a methodology that the isotherm of oxidative/reductive adsorp...Fast scan voltammetry is an efficient tool to distinguish oxidative/reductive adsorp- tion/desorption from that for bulk reaction. In this work, we provide a methodology that the isotherm of oxidative/reductive adsorption desorption processes at electrode surface can be obtained using just one solution with relatively low reactant concentration, by taking the advantage of varying the potential scan rate (relative of the diffusion rate) to tune the adsorption rate and proper mathematic treatment. The methodology is demonstrated by taking acetate adsorption at Pt(lll) in acidic solution as an example. The possibility for extension of this method toward mechanistic studies of complicated electrocatalytic reactions is also given.展开更多
A detailed study of the cyclic voltammtry curve of Pt(111) electrode in H2SO4 solution by X-ray photoe1ectron spectroscopy (XPS) and a low energy electron diffeaction (LEED) has provided firstly direct evidence that t...A detailed study of the cyclic voltammtry curve of Pt(111) electrode in H2SO4 solution by X-ray photoe1ectron spectroscopy (XPS) and a low energy electron diffeaction (LEED) has provided firstly direct evidence that the anomalous features reported originally by Clavilier et al. are associated with the specific adsorption of sulfate ainons rather than hydrogen adsorption. The ()R30 structure on Pt(111) obtained after electrode emersion on the positive scan at more positive potentials than 0.23V vs. Ag/AgCl appears sedtaneously with sharp increase of XPS of O1s and S2p. This implies the relationship between anomalous peak and sulfate anion adsorption on emersed Pt(111 ) electrode.展开更多
利用单晶旋转圆盘电极技术(Hanging Meniscus Rotating Disk Electrode,HMRD)在硫酸和高氯酸溶液中,分别研究了甘氨酸修饰的Pt(111)电极表面氧分子的电催化还原反应.实验发现:在硫酸溶液中,经甘氨酸修饰的Pt(111)电极表面的氧还原活性...利用单晶旋转圆盘电极技术(Hanging Meniscus Rotating Disk Electrode,HMRD)在硫酸和高氯酸溶液中,分别研究了甘氨酸修饰的Pt(111)电极表面氧分子的电催化还原反应.实验发现:在硫酸溶液中,经甘氨酸修饰的Pt(111)电极表面的氧还原活性明显提高,其中氧还原的半波电位与Pt(111)电极的相比正移约0.1 V,而在高氯酸溶液中,甘氨酸修饰的Pt(111)电极的活性几乎没有发生变化.该实验结果表明:甘氨酸修饰的Pt(111)电极一方面抑制了SO42-在电极表面的吸附,另一方面又能在电极表面提供相邻的空位供氧分子吸附.通过与文献中报道的CN-修饰的Pt(111)电极上的氧还原结果的对比,可以推测甘氨酸修饰的Pt(111)电极表面氧还原活性提高,是由于甘氨酸在Pt(111)表面可能先被氧化成CN-后吸附在电极表面,进而促进了氧分子的电催化还原反应.展开更多
低温(110~130K)下,将次表层Fe结构的Pt-Fe模型催化剂(即Pt/Fe/Pt(111)结构)暴露于不同量CO气体,经不同温度退火后,采用高分辨电子能量损失谱(HREELS)研究催化剂表面CO分子的振动谱。结果表明,当CO的暴露量低于0.2 L (Langmuir)时,Pt/Fe...低温(110~130K)下,将次表层Fe结构的Pt-Fe模型催化剂(即Pt/Fe/Pt(111)结构)暴露于不同量CO气体,经不同温度退火后,采用高分辨电子能量损失谱(HREELS)研究催化剂表面CO分子的振动谱。结果表明,当CO的暴露量低于0.2 L (Langmuir)时,Pt/Fe/Pt(111)表面只存在顶位吸附;当暴露量大于0.4L,除了顶位吸附外,桥位吸附开始出现;顶位吸附分子的C-O键振动峰随着暴露量的增加不断向高波数方向偏移。退火温度影响Pt/Fe/Pt(111)表面CO的吸附形式,低于255K时,顶位吸附分子的脱附速率大于桥位吸附分子;高于255 K时,桥位吸附分子的脱附速率较大,并先于顶位吸附的CO从表面完全脱附,其完全脱附温度比Pt(111)表面低50 K。展开更多
The adsorption process and hydrogenation mechanisms of 2-methylthiophene on the Pt(111) surface have been elucidated using density functional theory(DFT). The optimal adsorption sites of reactants, intermediates, ...The adsorption process and hydrogenation mechanisms of 2-methylthiophene on the Pt(111) surface have been elucidated using density functional theory(DFT). The optimal adsorption sites of reactants, intermediates, and products as well as the activation energy and reaction energy of each elementary reactions were investigated. The results turned out that the 2-methylthiophene tilt to the Pt(111) catalyst with the C_1–C_2 double bond at the top site was the most stable. During the hydrogenation process, the heat of reaction almost located at the negative side, so dropping the temperature is good for the occurrence of hydrogenation process. The hydrogenation steps of mechanism take place along C_2→C_3→C_1→C_4→S→C_1 to generate the product of pentane-2-thiol, in which the first step with the highest energy barrier is the rate-determining step.展开更多
基金V. ACKNOWLEDGMENTS This work was supported by the National Natural Science Foundation of China (No.20773116), the National Instrumentation Program (No.2011YQ03012416), and 973 Program from the Ministry of Science and Technology of China (No.2010CB923302).
文摘Kinetics of dissociative O2 adsorption, OHad desorption, and oxygen reduction reaction (ORR) at Pt(111) electrode in 0.1 mol/L HClO4 has been investigated. Reversible OHad adsorption/desorption occurs at potentials from 0.6 V to 1.0 V (vs. RHE) with the exchange current density of ca. 50 mA/cm^2 at 0.8 V, the fast kinetics of OHad desorption indicates that it should not be the rate determining step for ORR. In the kineticor kinetic-mass transport mix controlled potential region, ORR current at constant potential displays slight decrease with reaction time. ORR current in the positive-going potential scan is slightly larger than that in the subsequent negative-going scan with electrode rotation speed (〉800 r/min) and slow potential scan rate (〈100 mV/s). The open circuit potential of Pt/0.1 mol/L HClO4 interface increases promptly from 0.9 V to 1.0 V after switch from O2 free- to O2-saturated solution. The increase of open circuit potential as well as ORR current decays under potential control due to the accumulation of OHad from dissociative adsorption of O2. It indicates that at Pt(111) the net rate for O2 decomposition to OHad is slightly faster than that for OHad removal, one cannot simply use the assumption of rate determining step to discuss ORR kinetics. Instead, the ORR kinetics is determined by both the kinetics for O2 decomposition to OHad as well as the thermo-equilibrium of OHad+H^++e→←H2O.
基金This work was supported by one Hundred Talents' Program of the Chinese Academy of Science, the National Natural Science Foundation of China (No.20773116, No.21273215, and No.J1030412), and 973 Program from theMinistry of Science and Technology of China (No.2010CB923302). Many Thanks to Prof. Shen Ye from Hokkaido university for the help in establishing techniques for single crystalline electro- chemistry.
文摘Fast scan voltammetry is an efficient tool to distinguish oxidative/reductive adsorp- tion/desorption from that for bulk reaction. In this work, we provide a methodology that the isotherm of oxidative/reductive adsorption desorption processes at electrode surface can be obtained using just one solution with relatively low reactant concentration, by taking the advantage of varying the potential scan rate (relative of the diffusion rate) to tune the adsorption rate and proper mathematic treatment. The methodology is demonstrated by taking acetate adsorption at Pt(lll) in acidic solution as an example. The possibility for extension of this method toward mechanistic studies of complicated electrocatalytic reactions is also given.
文摘A detailed study of the cyclic voltammtry curve of Pt(111) electrode in H2SO4 solution by X-ray photoe1ectron spectroscopy (XPS) and a low energy electron diffeaction (LEED) has provided firstly direct evidence that the anomalous features reported originally by Clavilier et al. are associated with the specific adsorption of sulfate ainons rather than hydrogen adsorption. The ()R30 structure on Pt(111) obtained after electrode emersion on the positive scan at more positive potentials than 0.23V vs. Ag/AgCl appears sedtaneously with sharp increase of XPS of O1s and S2p. This implies the relationship between anomalous peak and sulfate anion adsorption on emersed Pt(111 ) electrode.
文摘低温(110~130K)下,将次表层Fe结构的Pt-Fe模型催化剂(即Pt/Fe/Pt(111)结构)暴露于不同量CO气体,经不同温度退火后,采用高分辨电子能量损失谱(HREELS)研究催化剂表面CO分子的振动谱。结果表明,当CO的暴露量低于0.2 L (Langmuir)时,Pt/Fe/Pt(111)表面只存在顶位吸附;当暴露量大于0.4L,除了顶位吸附外,桥位吸附开始出现;顶位吸附分子的C-O键振动峰随着暴露量的增加不断向高波数方向偏移。退火温度影响Pt/Fe/Pt(111)表面CO的吸附形式,低于255K时,顶位吸附分子的脱附速率大于桥位吸附分子;高于255 K时,桥位吸附分子的脱附速率较大,并先于顶位吸附的CO从表面完全脱附,其完全脱附温度比Pt(111)表面低50 K。
基金supported by the Special Program for Key Basic Research of the Ministry of Science and Technology,China(No.2014CB460608)
文摘The adsorption process and hydrogenation mechanisms of 2-methylthiophene on the Pt(111) surface have been elucidated using density functional theory(DFT). The optimal adsorption sites of reactants, intermediates, and products as well as the activation energy and reaction energy of each elementary reactions were investigated. The results turned out that the 2-methylthiophene tilt to the Pt(111) catalyst with the C_1–C_2 double bond at the top site was the most stable. During the hydrogenation process, the heat of reaction almost located at the negative side, so dropping the temperature is good for the occurrence of hydrogenation process. The hydrogenation steps of mechanism take place along C_2→C_3→C_1→C_4→S→C_1 to generate the product of pentane-2-thiol, in which the first step with the highest energy barrier is the rate-determining step.