期刊文献+
共找到1,841篇文章
< 1 2 93 >
每页显示 20 50 100
Direct atomic-level insight into oxygen reduction reaction on size-dependent Pt-based electrocatalysts from density functional theory calculations
1
作者 Fangren Qian Lishan Peng +2 位作者 Yujuan Zhuang Lei Liu Qingjun Chen 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2023年第9期140-146,共7页
Developing novel oxygen reduction reaction(ORR)catalysts with high activity is urgent for proton exchange membrane fuel cells.Herein,we investigated a group of size-dependent Pt-based catalysts as promising ORR cataly... Developing novel oxygen reduction reaction(ORR)catalysts with high activity is urgent for proton exchange membrane fuel cells.Herein,we investigated a group of size-dependent Pt-based catalysts as promising ORR catalysts by density functional theory calculations,ranging from single-atom,nanocluster to bulk Pt catalysts.The results showed that the ORR overpotential of these Pt-based catalysts increased when its size enlarged to the nanoparticle scale or reduced to the single-atom scale,and the Pt_(38)cluster had the lowest ORR overpotential(0.46 V)compared with that of Pt_(111)(0.57 V)and single atom Pt(0.7 V).Moreover,we established a volcano curve relationship between the ORR overpotential and binding energy of O*(ΔE_(O*),confirming the intermediate species anchored on Pt38cluster with suitable binding energy located at top of volcano curve.The interaction between intermediate species and Pt-based catalysts were also investigated by the charge distribution and projected density of state and which further confirmed the results of volcano curve. 展开更多
关键词 Density functional theory(DFT) calculations pt-based electrocatalysts Oxygen reduction reaction
下载PDF
Modified electronic structure and enhanced hydroxyl adsorption make quaternary Pt-based nanosheets efficient anode electrocatalysts for formic acid-/alcohol-air fuel cells
2
作者 Fengling Zhao Qiang Yuan +2 位作者 Siyang Nie Liang Wu Xun Wang 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2024年第5期142-150,共9页
Surface/interface engineering of a multimetallic nanostructure with diverse electrocatalytic properties for direct liquid fuel cells is desirable yet challenging.Herein,using visible light,a class of quaternary Pt_(1)... Surface/interface engineering of a multimetallic nanostructure with diverse electrocatalytic properties for direct liquid fuel cells is desirable yet challenging.Herein,using visible light,a class of quaternary Pt_(1)Ag_(0.1)Bi_(0.16)Te_(0.29)ultrathin nanosheets is fabricated and used as high-performance anode electrocatalysts for formic acid-/alcohol-air fuel cells.The modified electronic structure of Pt,enhanced hydroxyl adsorption,and abundant exterior defects afford Pt_(1)Ag_(0.1)Bi_(0.16)Te_(0.29)/C high intrinsic anodic electrocatalytic activity to boost the power densities of direct formic acid-/methanol-/ethanol-/ethylene glycol-/glycerol-air fuel cells,and the corresponding peak power density of Pt_(1)Ag_(0.1)Bi_(0.16)Te_(0.29)/C is respectively 129.7,142.3,105.4,124.3,and 128.0 mW cm^(-2),considerably outperforming Pt/C.Operando in situ Fourier transform infrared reflection spectroscopy reveals that formic acid oxidation on Pt_(1)Ag_(0.1)Bi_(0.16)Te_(0.29)/C occurs via a CO_(2)-free direct pathway.Density functional theory calculations show that the presence of Ag,Bi,and Te in Pt_(1)Ag_(0.1)Bi_(0.16)Te_(0.29)suppresses CO^(*)formation while optimizing dehydrogenation steps and synergistic effect and modified Pt effectively enhance H_(2)O dissociation to improve electrocatalytic performance.This synthesis strategy can be extended to 43 other types of ultrathin multimetallic nanosheets(from ternary to octonary nanosheets),and efficiently capture precious metals(i.e.,Pd,Pt,Rh,Ru,Au,and Ag)from different water sources. 展开更多
关键词 pt-based nanosheets Modifiedelectronic structure Enhanced hydroxyl adsorption Formicacidand alcohol oxidation Direct liquid fuel cells
下载PDF
Strain engineering of Pt-based electrocatalysts for oxygen reaction reduction
3
作者 Zeyu WANG Yanru LIU +4 位作者 Shun CHEN Yun ZHENG Xiaogang FU Yan ZHANG Wanglei WANG 《Frontiers in Energy》 SCIE EI CSCD 2024年第2期241-262,共22页
Proton exchange membrane fuel cells(PEMFCs)are playing irreplaceable roles in the construction of the future sustainable energy system.However,the insufficient performance of platinum(Pt)-based electrocatalysts for ox... Proton exchange membrane fuel cells(PEMFCs)are playing irreplaceable roles in the construction of the future sustainable energy system.However,the insufficient performance of platinum(Pt)-based electrocatalysts for oxygen reduction reaction(ORR)hinders the overall efficiency of PEMFCs.Engineering the surface strain of catalysts is considered an effective way to tune their electronic structures and therefore optimize catalytic behavior.In this paper,insights into strain engineering for improving Pt-based catalysts toward ORR are elaborated in detail.First,recent advances in understanding the strain effects on ORR catalysts are comprehensively discussed.Then,strain engineering methodologies for adjusting Ptbased catalysts are comprehensively discussed.Finally,further information on the various challenges and potential prospects for strain modulation of Pt-based catalysts is provided. 展开更多
关键词 strain engineering pt-based catalysts oxygen reduction reaction(ORR) catalytic performance proton exchange membrane fuel cells(PEMFCs)
原文传递
Precision tuning of highly efficient Pt-based ternary alloys on nitrogen-doped multi-wall carbon nanotubes for methanol oxidation reaction
4
作者 Xingqun Zheng Zhengcheng Wang +3 位作者 Qian Zhou Qingmei Wang Wei He Shun Lu 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2024年第1期242-251,I0006,共11页
The electrochemical methanol oxidation is a crucial reaction in the conversion of renewable energy.To enable the widespread adoption of direct methanol fuel cells(DMFCs),it is essential to create and engineer catalyst... The electrochemical methanol oxidation is a crucial reaction in the conversion of renewable energy.To enable the widespread adoption of direct methanol fuel cells(DMFCs),it is essential to create and engineer catalysts that are both highly effective and robust for conducting the methanol oxidation reaction(MOR).In this work,trimetallic PtCoRu electrocatalysts on nitrogen-doped carbon and multi-wall carbon nanotubes(PtCoRu@NC/MWCNTs)were prepared through a two-pot synthetic strategy.The acceleration of CO oxidation to CO_(2) and the blocking of CO reduction on adjacent Pt active sites were attributed to the crucial role played by cobalt atoms in the as-prepared electrocatalysts.The precise control of Co atoms loading was achieved through precursor stoichiometry.Various physicochemical techniques were employed to analyze the morphology,element composition,and electronic state of the catalyst.Electrochemical investigations and theoretical calculations confirmed that the Pt_(1)Co_(3)Ru_(1)@NC/MWCNTs exhibit excellent electrocatalytic performance and durability for the process of MOR.The enhanced MOR activity can be attributed to the synergistic effect between the multiple elements resulting from precisely controlled Co loading content on surface of the electrocatalyst,which facilitates efficient charge transfer.This interaction between the multiple components also modifies the electronic structures of active sites,thereby promoting the conversion of intermediates and accelerating the MOR process.Thus,achieving precise control over Co loading in PtCoRu@NC/MWCNTs would enable the development of high-performance catalysts for DMFCs. 展开更多
关键词 Ternary alloys electrocatalystS Methanol oxidation reaction Electron transfer Theoretical calculations
下载PDF
Pt–C interactions in carbon-supported Pt-based electrocatalysts
5
作者 Yu-Xuan Xiao Jie Ying +1 位作者 Hong-Wei Liu Xiao-Yu Yang 《Frontiers of Chemical Science and Engineering》 SCIE EI CSCD 2023年第11期1677-1697,共21页
Carbon-supported Pt-based materials are highly promising electrocatalysts.The carbon support plays an important role in the Pt-based catalysts by remarkably influencing the growth,particle size,morphology,dispersion,e... Carbon-supported Pt-based materials are highly promising electrocatalysts.The carbon support plays an important role in the Pt-based catalysts by remarkably influencing the growth,particle size,morphology,dispersion,electronic structure,physiochemical property and function of Pt.This review summarizes recent progress made in the development of carbon-supported Pt-based catalysts,with special emphasis being given to how activity and stability enhancements are related to Pt–C interactions in various carbon supports,including porous carbon,heteroatom doped carbon,carbon-based binary support,and their corresponding electrocatalytic applications.Finally,the current challenges and future prospects in the development of carbon-supported Pt-based catalysts are discussed. 展开更多
关键词 Pt-C interactions pt-based materials carbon support electrocatalysis
原文传递
Tuning metal-support interaction of Pt-based electrocatalysts for hydrogen energy conversion
6
作者 Shenzhou Li Tanyuan Wang Qing Li 《Science China Chemistry》 SCIE EI CAS CSCD 2023年第12期3398-3414,共17页
Pt-based electrocatalysts hold great promise for key electrocatalytic reactions in hydrogen-related energy conversion devices.Generally,the catalytic performance is significantly influenced by metal-support interactio... Pt-based electrocatalysts hold great promise for key electrocatalytic reactions in hydrogen-related energy conversion devices.Generally,the catalytic performance is significantly influenced by metal-support interactions(MSI)in the catalysts,making the tuning of MSI in Pt-based catalysts a highly intriguing research focus.In this review,the catalytic mechanism of Pt-based electrocatalysts is firstly introduced.Subsequently,the effects of MSI on supported Pt electrocatalysts are summarized into four types:geometric effects,electronic effects,synergistic effects,and structural reconfiguration.Finally,the prospect of optimizing the performance of Pt-based electrocatalysts by engineering MSI is exhibited,with the aim of inspiring innovation and advancement of supported Pt catalysts,thereby facilitating the development and utilization of hydrogen energy. 展开更多
关键词 metal-support interaction pt-based catalysts ELECTROCATALYSIS hydrogen evolution reaction oxygen reduction reaction
原文传递
Controlled Synthesis of Carbon-Supported Pt-Based Electrocatalysts for Proton Exchange Membrane Fuel Cells 被引量:2
7
作者 Huiyuan Liu Jian Zhao Xianguo Li 《Electrochemical Energy Reviews》 SCIE EI 2022年第4期138-189,共52页
Proton exchange membrane fuel cells are playing an increasing role in postpandemic economic recovery and climate action plans.However,their performance,cost,and durability are significantly related to Pt-based electro... Proton exchange membrane fuel cells are playing an increasing role in postpandemic economic recovery and climate action plans.However,their performance,cost,and durability are significantly related to Pt-based electrocatalysts,hampering their large-scale commercial application.Hence,considerable efforts have been devoted to improving the activity and durability of Pt-based electrocatalysts by controlled synthesis in recent years as an effective method for decreasing Pt use,and consequently,the cost.Therefore,this review article focuses on the synthesis processes of carbon-supported Pt-based electrocatalysts,which significantly affect the nanoparticle size,shape,and dispersion on supports and thus the activity and durability of the prepared electrocatalysts.The reviewed processes include(i)the functionalization of a commercial carbon support for enhanced catalyst-support interaction and additional catalytic effects,(ii)the methods for loading Pt-based electrocatalysts onto a carbon support that impact the manufacturing costs of electrocatalysts,(iii)the preparation of spheri-cal and nonspherical Pt-based electrocatalysts(polyhedrons,nanocages,nanoframes,one-and two-dimensional nanostruc-tures),and(iv)the postsynthesis treatments of supported electrocatalysts.The influences of the supports,key experimental parameters,and postsynthesis treatments on Pt-based electrocatalysts are scrutinized in detail.Future research directions are outlined,including(i)the full exploitation of the potential functionalization of commercial carbon supports,(ii)scaled-up one-pot synthesis of carbon-supported Pt-based electrocatalysts,and(iii)simplification of postsynthesis treatments.One-pot synthesis in aqueous instead of organic reaction systems and the minimal use of organic ligands are preferred to simplify the synthesis and postsynthesis treatment processes and to promote the mass production of commercial carbon-supported Pt-based electrocatalysts. 展开更多
关键词 Carbon-supported pt-based electrocatalysts Synthesis Shape Functionalization of commercial carbon support Postsynthesis treatment
原文传递
Templated synthesis of transition metal phosphide electrocatalysts for oxygen and hydrogen evolution reactions 被引量:4
8
作者 Rose Anne Acedera Alicia Theresse Dumlao +4 位作者 DJ Donn Matienzo Maricor Divinagracia Julie Anne del Rosario Paraggua Po-Ya Abel Chuang Joey Ocon 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2024年第2期646-669,I0014,共25页
Transition metal phosphides(TMPs)have been regarded as alternative hydrogen evolution reaction(HER)and oxygen evolution reaction(OER)catalysts owing to their comparable activity to those of noble metal-based catalysts... Transition metal phosphides(TMPs)have been regarded as alternative hydrogen evolution reaction(HER)and oxygen evolution reaction(OER)catalysts owing to their comparable activity to those of noble metal-based catalysts.TMPs have been produced in various morphologies,including hollow and porous nanostructures,which are features deemed desirable for electrocatalytic materials.Templated synthesis routes are often responsible for such morphologies.This paper reviews the latest advances and existing challenges in the synthesis of TMP-based OER and HER catalysts through templated methods.A comprehensive review of the structure-property-performance of TMP-based HER and OER catalysts prepared using different templates is presented.The discussion proceeds according to application,first by HER and further divided among the types of templates used-from hard templates,sacrificial templates,and soft templates to the emerging dynamic hydrogen bubble template.OER catalysts are then reviewed and grouped according to their morphology.Finally,prospective research directions for the synthesis of hollow and porous TMP-based catalysts,such as improvements on both activity and stability of TMPs,design of environmentally benign templates and processes,and analysis of the reaction mechanism through advanced material characterization techniques and theoretical calculations,are suggested. 展开更多
关键词 OER HER Transition metal phosphide Templated synthesis electrocatalystS
下载PDF
Design Principles and Mechanistic Understandings of Non-Noble-Metal Bifunctional Electrocatalysts for Zinc-Air Batteries 被引量:1
9
作者 Yunnan Gao Ling Liu +10 位作者 Yi Jiang Dexin Yu Xiaomei Zheng Jiayi Wang Jingwei Liu Dan Luo Yongguang Zhang Zhenjia Shi Xin Wang Ya‑Ping Deng Zhongwei Chen 《Nano-Micro Letters》 SCIE EI CAS CSCD 2024年第9期13-48,共36页
Zinc-air batteries(ZABs)are promising energy storage systems because of high theoretical energy density,safety,low cost,and abundance of zinc.However,the slow multi-step reaction of oxygen and heavy reliance on noble-... Zinc-air batteries(ZABs)are promising energy storage systems because of high theoretical energy density,safety,low cost,and abundance of zinc.However,the slow multi-step reaction of oxygen and heavy reliance on noble-metal catalysts hinder the practical applications of ZABs.Therefore,feasible and advanced non-noble-metal elec-trocatalysts for air cathodes need to be identified to promote the oxygen catalytic reaction.In this review,we initially introduced the advancement of ZABs in the past two decades and provided an overview of key developments in this field.Then,we discussed the work-ing mechanism and the design of bifunctional electrocatalysts from the perspective of morphology design,crystal structure tuning,interface strategy,and atomic engineering.We also included theoretical studies,machine learning,and advanced characterization technologies to provide a comprehensive understanding of the structure-performance relationship of electrocatalysts and the reaction pathways of the oxygen redox reactions.Finally,we discussed the challenges and prospects related to designing advanced non-noble-metal bifunctional electrocatalysts for ZABs. 展开更多
关键词 Zinc-air batteries Bifunctional electrocatalysts Design principles Mechanistic understandings
下载PDF
Research progress of Pt and Pt-based cathode electrocatalysts for proton-exchange membrane fuel cells 被引量:2
10
作者 Ni Suo Longsheng Cao +1 位作者 Xiaoping Qin Zhigang Shao 《Chinese Physics B》 SCIE EI CAS CSCD 2022年第12期619-628,共10页
Proton-exchange membrane fuel cells(PEMFCs)have been widely used commercially to solve the energy crisis and environmental pollution.The oxygen reduction reaction(ORR)at the cathode is the rate-determining step in PEM... Proton-exchange membrane fuel cells(PEMFCs)have been widely used commercially to solve the energy crisis and environmental pollution.The oxygen reduction reaction(ORR)at the cathode is the rate-determining step in PEMFCs.Platinum(Pt)catalysts are used to accelerate the ORR kinetics.Pt’s scarcity,high cost,and instability in an acidic environment at high potentials seriously hinder the commercialization of PEMFCs.Therefore,studies should explore electrocatalysts with high catalytic activity,enhanced stability,and low-Pt loading.This review briefly introduces the research progress on Pt and Pt-based ORR electrocatalysts for PEMFCs,including anticorrosion catalyst supports,Pt,and Pt-based alloy electrocatalysts.Advanced preparation technology and material characterization of Pt-based ORR electrocatalysts are necessary to improve the performance and corresponding reaction mechanisms. 展开更多
关键词 electrocatalystS oxygen reduction reaction ACTIVITY STABILITY
下载PDF
A robust & weak-nucleophilicity electrocatalyst with an inert response for chlorine ion oxidation in large-current seawater electrolysis 被引量:1
11
作者 Junting Dong Chang Yu +5 位作者 Hui Wang Lin Chen Hongling Huang Yingnan Han Qianbing Wei Jieshan Qiu 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2024年第3期486-495,I0011,共11页
Seawater splitting into hydrogen,a promising technology,is seriously limited by the durability and tolerance of electrocatalysts for chlorine ions in seawater at large current densities due to chloride oxidation and c... Seawater splitting into hydrogen,a promising technology,is seriously limited by the durability and tolerance of electrocatalysts for chlorine ions in seawater at large current densities due to chloride oxidation and corrosion.Here,we present a robust and weak-nucleophilicity nickel-iron hydroxide electrocatalyst with excellent selectivity for oxygen evolution and an inert response for chlorine ion oxidation which are key and highly desired for efficient seawater electrolysis.Such a weak-nucleophilicity electrocatalyst can well match with strong-nucleophilicity OH-compared with the weak-nucleophilicity Cl^(-),resultantly,the oxidation of OH-in electrolyte can be more easily achieved relative to chlorine ion oxidation,confirmed by ethylenediaminetetraacetic acid disodium probing test.Further,no strongly corrosive hypochlorite is produced when the operating voltage reaches about 2.1 V vs.RHE,a potential that is far beyond the thermodynamic potential of chlorine ion oxidatio n.This concept and approach to reasonably designing weaknucleophilicity electrocatalysts that can greatly avoid chlorine ion oxidation under alkaline seawater environments can push forward the seawater electrolysis technology and also accelerate the development of green hydrogen technique. 展开更多
关键词 Nickel-iron hydroxide electrocatalysts Highly selective seawater electrolysis Weak nucleophilicity Oxygen evolution reaction Hydrogen
下载PDF
Recent advances and future prospects on Ni_(3)S_(2)-Based electrocatalysts for efficient alkaline water electrolysis 被引量:1
12
作者 Shiwen Wang Zhen Geng +4 位作者 Songhu Bi Yuwei Wang Zijian Gao Liming Jin Cunman Zhang 《Green Energy & Environment》 SCIE EI CAS CSCD 2024年第4期659-683,共25页
Green hydrogen(H_(2))produced by renewable energy powered alkaline water electrolysis is a promising alternative to fossil fuels due to its high energy density with zero-carbon emissions.However,efficient and economic... Green hydrogen(H_(2))produced by renewable energy powered alkaline water electrolysis is a promising alternative to fossil fuels due to its high energy density with zero-carbon emissions.However,efficient and economic H_(2) production by alkaline water electrolysis is hindered by the sluggish hydrogen evolution reaction(HER)and oxygen evolution reaction(OER).Therefore,it is imperative to design and fabricate high-active and low-cost non-precious metal catalysts to improve the HER and OER performance,which affects the energy efficiency of alkaline water electrolysis.Ni_(3)S_(2) with the heazlewoodite structure is a potential electrocatalyst with near-metal conductivity due to the Ni–Ni metal network.Here,the review comprehensively presents the recent progress of Ni_(3)S_(2)-based electrocatalysts for alkaline water electrocatalysis.Herein,the HER and OER mechanisms,performance evaluation criteria,preparation methods,and strategies for performance improvement of Ni_(3)S_(2)-based electrocatalysts are discussed.The challenges and perspectives are also analyzed. 展开更多
关键词 Alkaline water electrolysis HYDROGEN electrocatalystS Ni_(3)S_(2)
下载PDF
Tin-mediated carbon-confined Pt_(3)Co ordered intermetallic nanoparticles as highly efficient and durable oxygen reduction electrocatalysts for rechargeable zinc-air batteries
13
作者 Ruotao Yang Chuhan Dai +4 位作者 Laiwei Zhang Ruirui Wang Kui Yin Bo Liu Ziliang Chen 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2024年第11期169-179,共11页
The development of electrocatalysts for the oxygen reduction reaction(ORR) that bears high selectivity,exceptional activity,and long-term stability is crucial for advancing various green energy technologies.Intermetal... The development of electrocatalysts for the oxygen reduction reaction(ORR) that bears high selectivity,exceptional activity,and long-term stability is crucial for advancing various green energy technologies.Intermetallics composed of platinum and transition metals are considered to be promising candidates for this purpose.However,they typically face challenges such as unfavorable intrinsic activity and a propensity for particle aggregation,diminishing their ORR performance.Against this backdrop,we present our findings on a N-doped carbon confined Pt_(3)Co intermetallic doped with p-block metal tin(Pt_(3)Co_(x)Sn_(1-x)/NC).The introduction of Sn induces lattice strain due to its larger atomic size,which leads to the distortion of the Pt_(3)Co lattice structure,while the coupling of carbon polyhedra inhibits the particle aggregation.The optimized Pt_(3)Co_(0.8)Sn_(0.2)/NC catalyst demonstrates an impressive half-wave potential of 0.86 V versus RHE,surpassing both Pt_(3)Co/NC and Pt_(3)Sn/NC catalysts.Moreover,the Pt_(3)Co_(0.8)Sn_(0.2)/NC exhibits a mass-specific activity as high as 1.4 A mg_(Pt)^(-1),ranking it in the top level among the intermetallicsbased ORR electrocatalysts.When further employed as a cathode material in a self-assembled zinc-air battery,it shows stable operation for over 80 h.These results underscore the significant impact of lattice strain engineering through the strategic doping of p-block metal in the carbon-confined Pt_(3)Co intermetallic,thereby enhancing the catalytic efficiency for the ORR. 展开更多
关键词 Lattice strain pt-based intermetallic N-doped carbon Electrocatalysis Oxygen reduction reaction
下载PDF
Recent advances of carbon fiber-based self-supported electrocatalysts in oxygen electrocatalysis
14
作者 Jinyu Han Nanping Deng +7 位作者 Hao Chi Gang Wang Yilong Wang Qiang Zeng Zhaozhao Peng Bowen Cheng Baoming Zhou Weimin Kang 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2024年第11期334-363,共30页
Oxygen reduction reaction(ORR) and oxygen evolution reaction(OER) are the key reactions in numerous renewable energy devices. Unlike conventional powdered catalysts, self-supported catalysts are extensively employed i... Oxygen reduction reaction(ORR) and oxygen evolution reaction(OER) are the key reactions in numerous renewable energy devices. Unlike conventional powdered catalysts, self-supported catalysts are extensively employed in oxygen electrocatalysis because of the enhanced electron-transfer rate, high specific surface area, and superior mechanical flexibility. Among the self-supported conductive substrates, carbon fiber usually exhibits several distinctive advantages, such as a straightforward preparation process, relatively low cost, good stability, and excellent conductivity. Against this background,carbon fiber-based self-supported electrocatalysts have been widely applied and studied in oxygen electrocatalysis, indicating a promising development direction in oxygen electrocatalyst research.Thus, it is essential to offer an overall summary of the research progress in this field to facilitate its subsequent development. Taking the regulatory mechanisms and modification methods as a starting point, this review comprehensively summarizes recent research on carbon fiber-based self-supported electrocatalysts in recent years. Firstly, a brief overview of the synthesis methods and regulatory mechanisms of carbon fiber-based self-supported electrocatalysts is given. Furthermore, the view also highlights the modification methods and research progress of self-supported electrocatalysts synthesized on carbon fiber-based substrates in recent years in terms of different dopant atoms. Finally, the prospects for the application of self-supported electrocatalysts based on carbon fiber in oxygen electrocatalysis and the possible future directions of their development are presented. This review summarizes recent developments and applications of self-supported bi-functional electrocatalysts with carbon fiber-based materials as the conducting substrate in oxygen electrocatalysis. It also lays a robust scientific foundation for the subsequent reasonable design of highly effective carbon fiber-based self-supported electrocatalysts. 展开更多
关键词 Carbon fiber Self-supported electrocatalysts ORR OER
下载PDF
Recent progress in two-dimensional metallenes and their potential application as electrocatalyst
15
作者 Umer Shahzad Mohsin Saeed +7 位作者 Muhammad Fazle Rabbee Hadi M.Marwani Jehan Y.Al-Humaidi Muhammad Altaf Raed H.Althomali Kwang-Hyun Baek Md.Rabiul Awual Mohammed M.Rahman 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2024年第7期577-598,共22页
In this article,we looked at metallenes,a novel class of two-dimensional(2D)metals that are attracting interest in the energy and catalysis sectors.Catalysis is one area where their exceptional physicochemical and ele... In this article,we looked at metallenes,a novel class of two-dimensional(2D)metals that are attracting interest in the energy and catalysis sectors.Catalysis is one area where their exceptional physicochemical and electrical characteristics might be useful.Metallenes are unique because they include several metal atoms that are not in a coordinated bond.This makes them more active and improves their atomic uti-lization,which in turn increases their catalytic potential.This article delves into the potential of two-dimensional metals as electrocatalysts for carbon dioxide reduction,fuel oxidation,oxygen evolution,and oxygen reduction reactions in the context of sustainable energy conversion.Owing to the exception-ally high surface-to-volume ratio,large surface area as well as their optimized atomic use efficiency,2D materials defined by atomic layers are crucial for surface-related sustainable energy applications.Due to its exceptional properties,such as high conductivity and the ability to enhance the exposure of active metal sites,2D metallenes have recently attracted a lot of interest for use in catalysis,electronics,and energy-related applications.With their highly mobility,adjustable surface states,and electrical struc-tures that can be fine-tuned,2D metallenes are promising nanostructure materials for use in energy con-version with the sustainable applications. 展开更多
关键词 Metallenes electrocatalystS Electrochemical processes Atomically thin structure
下载PDF
MXenes and heterostructures-based electrocatalysts for hydrogen evolution reaction:Recent developments and future outlook
16
作者 Abdul Hanan Hafiz Taimoor Ahmed Awan +5 位作者 Faiza Bibi Raja Rafidah Raja Sulaiman Wai Yin Wong Rashmi Walvekar Seema Singh Mohammad Khalid 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2024年第5期176-206,共31页
The increasing focus on electrocatalysis for sustainable hydrogen(H_(2))production has prompted significant interest in MXenes,a class of two-dimensional(2D)materials comprising metal carbides,carbonitrides,and nitrid... The increasing focus on electrocatalysis for sustainable hydrogen(H_(2))production has prompted significant interest in MXenes,a class of two-dimensional(2D)materials comprising metal carbides,carbonitrides,and nitrides.These materials exhibit intriguing chemical and physical properties,including excellent electrical conductivity and a large surface area,making them attractive candidates for the hydrogen evolution reaction(HER).This scientific review explores recent advancements in MXene-based electrocatalysts for HER kinetics.It discusses various compositions,functionalities,and explicit design principles while providing a comprehensive overview of synthesis methods,exceptional properties,and electro-catalytic approaches for H_(2) production via electrochemical reactions.Furthermore,challenges and future prospects in designing MXenes-based electrocatalysts with enhanced kinetics are highlighted,emphasizing the potential of incorporating different metals to expand the scope of electrochemical reactions.This review suggests possible efforts for developing advanced MXenes-based electrocatalysts,particularly for efficient H_(2) generation through electrochemical water-splitting reactions.. 展开更多
关键词 MXenes electrocatalyst Water Splitting Hydrogen Generation Clean Energy
下载PDF
Defects and morphology engineering for constructing V_(s)-Ni_(3)S_(2)@V_(s)-Cu_(2)S nanotube heterojunction arrays toward efficient bifunctional electrocatalyst for overall water splitting
17
作者 Wenyuan Sun Alan Meng +4 位作者 Lei Wang Guicun Li Jinfeng Cui Yongkai Sun Zhenjiang Li 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2024年第7期29-40,共12页
The development of highly active,stable and inexpensive electrocatalysts for hydrogen production by defects and morphology engineering remains a great challenge.Herein,S vacancies-rich Ni_(3)S_(2)@Cu_(2)S nan-otube he... The development of highly active,stable and inexpensive electrocatalysts for hydrogen production by defects and morphology engineering remains a great challenge.Herein,S vacancies-rich Ni_(3)S_(2)@Cu_(2)S nan-otube heterojunction arrays were in-situ grown on copper foam(V_(s)-Ni_(3)S_(2)@V_(s)-Cu_(2)S NHAs/CF)for efficient electrocatalytic overall water splitting.With the merits of nanotube arrays and efficient electronic mod-ulation drived by the OD vacancy defect and 2D heterojunction defect,the resultant V_(s)-Ni_(3)S_(2)@V_(s)-Cu_(2)S NHAs/CF electrocatalyst exhibits excellent electrocatalytic activity with a low overpotential of 47 mV for the hydrogen evolution reaction(HER)at 10 mA cm^(-2) current density,and 263 mV for the oxygen evolution reaction(OER)at 50 mA cm^(-2) current density,as well as a cell voltage of 1.48 V at 10 mA cm^(-2).Moreover,the nanotube heterojunction arrays endows V_(s)-Ni_(3)S_(2)@V_(s)-Cu_(2)S NHAs/CF with outstanding stability in long-term catalytic processes,as confirmed by the continuous chronopotentiom-etry tests at current densities of 10 mA cm^(-2) for 100 h. 展开更多
关键词 Nanotubearrays HETEROJUNCTION VACANCY Bifunctional electrocatalyst Overall water splitting
下载PDF
Ribosome-inspired electrocatalysts inducing preferential nucleation and growth of three-dimensional lithium sulfide for high-performance lithium-sulfur batteries
18
作者 Zhen Wu Wenfeng He +7 位作者 Jiahui Yang Yunuo Gu Ruiqi Yang Yiran Sun Jiajia Yuan Xin Wang Junwu Zhu Yongsheng Fu 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2024年第7期517-526,共10页
Nucleation of lithium sulfide(Li_(2)S)induced by electrocatalysts plays a crucial role in mitigating the shut-tle effect.However,short-chain polysulfides on electrocatalysts surfaces tend to re-dissolve into elec-trol... Nucleation of lithium sulfide(Li_(2)S)induced by electrocatalysts plays a crucial role in mitigating the shut-tle effect.However,short-chain polysulfides on electrocatalysts surfaces tend to re-dissolve into elec-trolytes,delaying Li_(2)S supersaturation and its nucleation.In this study,we draw inspiration from the ribosome-driven protein synthesis process in cells to prepare ultrasmall nitrogen-doped MoS_(2) nanocrys-tals anchored on porous nitrogen-doped carbon networks(N-MoS_(2)-NC)electrocatalysts.Excitedly,the ex-situ SEM demonstrates that ribosome-inspired N-MoS_(2)-NC electrocatalysts induce early nucleation and rapid growth of three-dimensional Li_(2)s during discharge.Theoretical calculations reveal that the Li-s bond length in N-MoS_(2)-Li_(2)S(100)is shorter,and the corresponding interfacial formation energy is lower than in MoS_(2)-Li_(2)S(100).This accelerated conversion of lithium polysulfides to Li_(2)S can enhance the utilization of active substances and inhibit the shuttle effect.This study highlights the potential of ribosome-inspired N-MoS_(2)-NC in improving the electrochemical stability of Li-S batteries,providing valuable insights for future electrocatalyst design. 展开更多
关键词 Lithium-sulfur batteries electrocatalystS Nanocrystals Ribosome-inspired Nucleation and growth
下载PDF
Fullerenes and derivatives as electrocatalysts: Promises and challenges
19
作者 Kun Guo Ning Li +1 位作者 Lipiao Bao Xing Lu 《Green Energy & Environment》 SCIE EI CAS CSCD 2024年第1期7-27,共21页
Carbon-based metal-free nanomaterials are promising alternatives to precious metals as electrocatalysts of key energy storage and conversion technologies.Of paramount significance are the establishment of design princi... Carbon-based metal-free nanomaterials are promising alternatives to precious metals as electrocatalysts of key energy storage and conversion technologies.Of paramount significance are the establishment of design principles by understanding the catalytic mechanisms and identifying the active sites.Distinct from sp2-conjugated graphene and carbon nanotube,fullerene possesses unique characteristics that are growingly being discovered and exploited by the electrocatalysis community.For instance,the well-defined atomic and molecular structures,the good electron affinity to tune the electronic structures of other substances,the intermolecular self-assembly into superlattices,and the on-demand chemical modification have endowed fullerene with incomparable advantages as electrocatalysts that are otherwise not applicable to other carbon ma-terials.As increasing studies are being reported on this intriguing topic,it is necessary to provide a state-of-the-art overview of the recent progress.This review takes such an initiative by summarizing the promises and challenges in the electrocatalytic applications of fullerene and its derivatives.The content is structured according to the composition and structure of fullerene,including intact fullerene(e.g.,fullerene composite and superlattices)and fullerene derivatives(e.g.,doped,endohedral,and disintegrated fullerene).The synthesis,characterization,catalytic mechanisms,and deficiencies of these fullerene-based materials are explicitly elaborated.We conclude it by sharing our perspectives on the key aspects that future efforts shall consider. 展开更多
关键词 FULLERENE Fullerene derivative Metal-free catalyst Structural defect electrocatalyst
下载PDF
Progress in metal oxide-based electrocatalysts for sustainable water splitting
20
作者 Aasiya S.Jamadar Rohit Sutar +2 位作者 Susmita Patil Reshma Khandekar Jyotiprakash B.Yadav 《Materials Reports(Energy)》 EI 2024年第3期19-34,共16页
Metal oxide-based electrocatalysts are promising alternatives to platinum group metals for water splitting due to their low cost,abundant raw materials,and impressive stability.This review covers recent progress in va... Metal oxide-based electrocatalysts are promising alternatives to platinum group metals for water splitting due to their low cost,abundant raw materials,and impressive stability.This review covers recent progress in various metal oxides tailored for hydrogen and oxygen evolution reactions,discussing their crystal structure,composition,and surface modification influence on performance.Strategies like surface engineering,doping,and nanostructuring are evaluated for enhancing catalytic activity and stability.The key considerations for commercialization are highlighted,emphasizing ongoing research,innovation,and future scope to drive widespread adoption of water-splitting technology for a cleaner and sustainable future. 展开更多
关键词 Metal oxide HER OER electrocatalyst Overall water spilling
下载PDF
上一页 1 2 93 下一页 到第
使用帮助 返回顶部