Developing high-performance bifunctional catalysts toward hydrogen evolution reaction(HER) and oxygen evolution reaction(OER) is essential to enhance water splitting efficiency for large-scale hydrogen production. Nei...Developing high-performance bifunctional catalysts toward hydrogen evolution reaction(HER) and oxygen evolution reaction(OER) is essential to enhance water splitting efficiency for large-scale hydrogen production. Neither noble metal Pt nor transition metal compounds show satisfactory performances for both HER and OER simultaneously. Here, we prepared a three-dimensional Pt-Ni3 Se2@NiOOH/NF(PNOF) hybrid catalyst via in-situ growth strategy. Benefitting from the self-supported structure and oxygen vacancies on the surface of NiOOH nanosheets, the PNOF electrode shows remarkably catalytic performance for dual HER and OER. The overall water electrolyzer using PNOF as anode and cathode can achieve a current density of10 mA cm^-2 at a low voltage of 1.52 V with excellent long-term stability, which is superior to precious metal catalysts of Pt/C and Ir/C. This study provides a promising strategy for preparing bifunctional catalysts with high performance.展开更多
基金supported by the National Natural Science Foundation of China(51804216,51472178 and U1601216)Tianjin Natural Science Foundation(16JCYBJC17600)and Shen-zhen Science and Technology Foundation(JCYJ20170307145703486)
文摘Developing high-performance bifunctional catalysts toward hydrogen evolution reaction(HER) and oxygen evolution reaction(OER) is essential to enhance water splitting efficiency for large-scale hydrogen production. Neither noble metal Pt nor transition metal compounds show satisfactory performances for both HER and OER simultaneously. Here, we prepared a three-dimensional Pt-Ni3 Se2@NiOOH/NF(PNOF) hybrid catalyst via in-situ growth strategy. Benefitting from the self-supported structure and oxygen vacancies on the surface of NiOOH nanosheets, the PNOF electrode shows remarkably catalytic performance for dual HER and OER. The overall water electrolyzer using PNOF as anode and cathode can achieve a current density of10 mA cm^-2 at a low voltage of 1.52 V with excellent long-term stability, which is superior to precious metal catalysts of Pt/C and Ir/C. This study provides a promising strategy for preparing bifunctional catalysts with high performance.