n-Si(111) surface tailed -C2H5, -C2H4COOH, -C2H2COOH were prepared by the reactions among Si-H to ethyl-Grignard, methyl acrylate and ethyl propionate, and the carboxyls were formed under the existence of trifluoroa...n-Si(111) surface tailed -C2H5, -C2H4COOH, -C2H2COOH were prepared by the reactions among Si-H to ethyl-Grignard, methyl acrylate and ethyl propionate, and the carboxyls were formed under the existence of trifluoroacetic acid. The composite n-Si(111) electrodes were obtained by depositing Pt nanodots and the photovoltaic characteristics for these electrodes were studied in I^-/I3^- redox electrolyte. The j-U (photo current density-potential) behaviors of photo-voltage and photocurrent densities to the electrodes under solar illumination varied regularly with groups of -C2H2COOH〉-C2H4COOH〉-H〉-C2H5. The photo-voltage and photocurrent density of the electrode tailed -C2 H2COOH were -0.641 V and 5.25 mA/cm^2, respectively, more negative than those of the non-conjugated modification.展开更多
Using the effect of the temperature on the capacitance–voltage(C–V)and conductance–voltage(G/ω–V)characteristics of PtSi/n-Si(111)Schottky diodes the profile of apparent doping concentrationthe potential di...Using the effect of the temperature on the capacitance–voltage(C–V)and conductance–voltage(G/ω–V)characteristics of PtSi/n-Si(111)Schottky diodes the profile of apparent doping concentrationthe potential difference between the Fermi energy level and the bottom of the conduction bandapparent barrier heightseries resistanceand the interface state density Nss have been investigated.From the temperature dependence of(C–V)it was found that these parameters are non-uniformly changed with increasing temperature in a wide temperature range of 79–360 K.The voltage and temperature dependences of apparent carrier distribution we attributed to the existence of self-assembled patches similar the quantum wells,which formed due to the process of Pt Si formation on semiconductor and the presence of hexagonal voids of Si(111).展开更多
基金We are grateful to the Project of the National Natural Science Foundation of China(Grant No.50602004)the support from Chinese Education for Back Student Abroad and the fund for Young Teacher of BUCT(Project No.QN0512)for financial support.
文摘n-Si(111) surface tailed -C2H5, -C2H4COOH, -C2H2COOH were prepared by the reactions among Si-H to ethyl-Grignard, methyl acrylate and ethyl propionate, and the carboxyls were formed under the existence of trifluoroacetic acid. The composite n-Si(111) electrodes were obtained by depositing Pt nanodots and the photovoltaic characteristics for these electrodes were studied in I^-/I3^- redox electrolyte. The j-U (photo current density-potential) behaviors of photo-voltage and photocurrent densities to the electrodes under solar illumination varied regularly with groups of -C2H2COOH〉-C2H4COOH〉-H〉-C2H5. The photo-voltage and photocurrent density of the electrode tailed -C2 H2COOH were -0.641 V and 5.25 mA/cm^2, respectively, more negative than those of the non-conjugated modification.
文摘Using the effect of the temperature on the capacitance–voltage(C–V)and conductance–voltage(G/ω–V)characteristics of PtSi/n-Si(111)Schottky diodes the profile of apparent doping concentrationthe potential difference between the Fermi energy level and the bottom of the conduction bandapparent barrier heightseries resistanceand the interface state density Nss have been investigated.From the temperature dependence of(C–V)it was found that these parameters are non-uniformly changed with increasing temperature in a wide temperature range of 79–360 K.The voltage and temperature dependences of apparent carrier distribution we attributed to the existence of self-assembled patches similar the quantum wells,which formed due to the process of Pt Si formation on semiconductor and the presence of hexagonal voids of Si(111).