期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
Laser-optimized Pt-Y alloy nanoparticles embedded in Pt-Y oxide matrix for high stability and ORR electrocatalytic activity
1
作者 Riccardo Brandiele Andrea Guadagnini +9 位作者 Mattia Parnigotto Federico Pini Vito Coviello Denis Badocco Paolo Pastore Gian Andrea Rizzi Andrea Vittadini Daniel Forrer Vincenzo Amendola Christian Durante 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2024年第5期508-520,共13页
The development of active yet stable catalysts for oxygen reduction reaction(ORR)is still a major issue for the extensive permeation of fuel cells into everyday technology.While nanostructured Pt catalysts are to date... The development of active yet stable catalysts for oxygen reduction reaction(ORR)is still a major issue for the extensive permeation of fuel cells into everyday technology.While nanostructured Pt catalysts are to date the best available systems in terms of activity,the same is not true for stability,particularly under operating conditions.In this work,Pt_(Х)Y alloy nanoparticles are proposed as active and durable electrocatalysts for ORR.Pt_(Х)Y nanoalloys are synthesized and further optimized by laser ablation in liquid followed by laser fragmentation in liquid.The novel integrated laser-assisted methodology succeeded in producing Pt_(Х)Y nanoparticles with the ideal size(<10 nm)of commercial Pt catalysts,yet resulting remarkably more active with E_(1/2)=0.943 V vs.RHE,specific activity=1095μA cm^(-2) and mass activity>1000 A g^(-1).At the same time,the nanoalloys are embedded in a fine Pt oxide matrix,which allows a greater stability of the catalyst than the commercial Pt reference,as directly verified on a gas diffusion electrode. 展开更多
关键词 ELECTROCATALySIS GDE ORR pt_(2)y pt_(3)y LAL LFL Oxide support ptO NANOALLOyS
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部