The thermodynamic factor in diffusion in the L1_2-type non-stoichiometricintermetallic compounds Ni_3Ga and Pt_3In was derived from the experimentally measured activities ofGa and In, respectively. The results show th...The thermodynamic factor in diffusion in the L1_2-type non-stoichiometricintermetallic compounds Ni_3Ga and Pt_3In was derived from the experimentally measured activities ofGa and In, respectively. The results show that the thermodynamic factor in diffusion in the Ni_3Gaand Pt_3In compounds exhibits the maximum near the stoichiometric composition with the variation ofcomposition over the compound region. The values indicate strong interaction between Ni and Gaatoms, as well as Pt and In atoms, respectively, as expected in ordered alloys.展开更多
The development of active yet stable catalysts for oxygen reduction reaction(ORR)is still a major issue for the extensive permeation of fuel cells into everyday technology.While nanostructured Pt catalysts are to date...The development of active yet stable catalysts for oxygen reduction reaction(ORR)is still a major issue for the extensive permeation of fuel cells into everyday technology.While nanostructured Pt catalysts are to date the best available systems in terms of activity,the same is not true for stability,particularly under operating conditions.In this work,Pt_(Х)Y alloy nanoparticles are proposed as active and durable electrocatalysts for ORR.Pt_(Х)Y nanoalloys are synthesized and further optimized by laser ablation in liquid followed by laser fragmentation in liquid.The novel integrated laser-assisted methodology succeeded in producing Pt_(Х)Y nanoparticles with the ideal size(<10 nm)of commercial Pt catalysts,yet resulting remarkably more active with E_(1/2)=0.943 V vs.RHE,specific activity=1095μA cm^(-2) and mass activity>1000 A g^(-1).At the same time,the nanoalloys are embedded in a fine Pt oxide matrix,which allows a greater stability of the catalyst than the commercial Pt reference,as directly verified on a gas diffusion electrode.展开更多
Pt-based catalysts are the typical industrial catalysts for propane dehydrogenation(PDH),which still suffer from insufficient lo ng-term durability due to the structu ral instability and coke deposition.A commercial ...Pt-based catalysts are the typical industrial catalysts for propane dehydrogenation(PDH),which still suffer from insufficient lo ng-term durability due to the structu ral instability and coke deposition.A commercial γ-Al_(2)O_(3) supported thermally robust sub-nanometer Pt2In3intermetallic catalyst with atomically ordered structure and rigorously separated Pt single atoms was fabricated,which showed outstanding robustness in 240 h long-term operation at 600℃ with the deactivation rate constant kdas low as0.00078 h^(-1), ranking among the lowest reported values.Based on various in situ characterizations and theoretical calculations,it was proved that the catalyst stability not only resulted from the separated Pt single-atom sites but also significantly affected by the distance of adjacent Pt atoms.An increasing distance to 3.25 A in the Pt_(2)In_(3)could induce a weak π-adsorption configuration of propylene on Pt sites,which facilitated the desorption of propylene and restrained the side reactions like coking.展开更多
Glycerol is an alternative sustainable fuel for fuel cells,and efficient electrocatalyst is crucial for glycerol oxidation reaction(GOR).The promising Pt catalysts are subject to the inadequate capability of C-C bond ...Glycerol is an alternative sustainable fuel for fuel cells,and efficient electrocatalyst is crucial for glycerol oxidation reaction(GOR).The promising Pt catalysts are subject to the inadequate capability of C-C bond cleavage and the susceptibility to poisoning.Herein,Pt-Sn alloyed nanoparticles are immobilized on hierarchical nitrogen-doped carbon nanocages(hNCNCs)by convenient ethylene glycol reduction and subsequent thermal reduction.The optimal Pt_(3)Sn/hNCNC catalyst exhibits excellent GOR performance with a high mass activity(5.9 A·mg_(Pt)^(-1)),which is 2.7 and 5.4 times higher than that of Pt/hNCNC and commercial Pt/C,respectively.Such an enhancement can be mainly ascribed to the increased anti-poisoning and C-C bond cleavage capability due to the Pt_(3)Sn alloying effect and Sn-enriched surface,the high dispersion of Pt_(3)Sn active species due to N-participation,as well as the high accessibility of Pt_(3)Sn active species due to the three-dimensional(3D)hierarchical architecture of hNCNC.This study provides an effective GOR electrocatalyst and convenient approach for catalyst preparation.展开更多
Heterogeneous nanocomposites comprising chemically distinct constituents are particularly promising in electrocatalysis.We herein report a synthetic strategy that combines the reduction of Pt and Co ionic precursors a...Heterogeneous nanocomposites comprising chemically distinct constituents are particularly promising in electrocatalysis.We herein report a synthetic strategy that combines the reduction of Pt and Co ionic precursors at an appropriate ratio with the subsequent phosphating at an elevated temperature for forming heterogeneous nanocomposites consisting of quasi-spherical Pt_(3)Co alloy domains and rod-like CoP_(2) domains for high-efficiency methanol electrooxidation.The strong electronic coupling between Pt_(3)Co and CoP_(2) domains in the nanocomposites render the electron density around Pt atoms to decrease,which is favorable for reducing the adsorption of poisoning CO-like intermediates on the catalyst surfaces.Accordingly,the as-prepared heterogeneous Pt_(3)Co–CoP_(2) nanocomposites show good performance for methanol electrooxidation both in acidic and alkaline media.In specific,at a Pt loading of only 6.4%on a common carbon substrate,the mass-based activity of Pt_(3)Co–CoP_(2) nanocomposites in an acidic medium is about 2 and 1.5 times as high as that of commercial Pt/C catalyst(20%mass loading)and home-made Pt_(3)Co alloy nanoparticles(8.0%mass loading),while in the alkaline medium,these values are 3 and 2,respectively.展开更多
The development of an efficient Pt-based electrocatalyst in acidic and alkaline electrolytes is of great significance to the field of electrocatalytic hydrogen evolution.Herein,we report a strategy for in situ growth ...The development of an efficient Pt-based electrocatalyst in acidic and alkaline electrolytes is of great significance to the field of electrocatalytic hydrogen evolution.Herein,we report a strategy for in situ growth of Pt_(3)Ni truncated octahedrons on Ti3C2Tx nanosheets and then obtain an ordered porous catalyst via a template method.Meanwhile,we use the finite element calculation to clarify the relationship between the component structure and performance and find that the performance of the spherical shell microstructure catalyst is higher than that of the disc structure catalyst,which is also verified by experiments.The experimental analysis shows that the ordered porous catalyst is conducive to enhancing electrocatalytic hydrogen evolution activity in acidic and alkaline electrolytes.In an acidic solution,the overpotential is 25 mV(10 mA·cm^(−2)),and the Tafel slope is 22.86 mV·dec−1.In an alkaline solution,the overpotential is 44.1 mV(10 mA·cm^(−2)),and the Tafel slope is 39.06 mV·dec−1.The synergistic coupling between Ti3C2Tx and Pt_(3)Ni nanoparticles improves the stability of the catalyst.The in situ growth strategy and design of microstructure with its correlation with catalytic performance represent critical steps toward the rational synthesis of catalysts with excellent catalytic activity.展开更多
基金This project is jointly supported by the National Natural Science Foundation of China (No. 29871005) the Science Foundation of Austria (No. P12962-CHE).
文摘The thermodynamic factor in diffusion in the L1_2-type non-stoichiometricintermetallic compounds Ni_3Ga and Pt_3In was derived from the experimentally measured activities ofGa and In, respectively. The results show that the thermodynamic factor in diffusion in the Ni_3Gaand Pt_3In compounds exhibits the maximum near the stoichiometric composition with the variation ofcomposition over the compound region. The values indicate strong interaction between Ni and Gaatoms, as well as Pt and In atoms, respectively, as expected in ordered alloys.
基金the P-DISC Grant PROMETEO(project number:P-DiSC#03NExuS_BIRD2021-UNIPD)DYNAMO(project number:P-P-DiSC#01BIRD2020-UNIPD)the financial support of the Fellowship in Applied Electrochemistry 2020。
文摘The development of active yet stable catalysts for oxygen reduction reaction(ORR)is still a major issue for the extensive permeation of fuel cells into everyday technology.While nanostructured Pt catalysts are to date the best available systems in terms of activity,the same is not true for stability,particularly under operating conditions.In this work,Pt_(Х)Y alloy nanoparticles are proposed as active and durable electrocatalysts for ORR.Pt_(Х)Y nanoalloys are synthesized and further optimized by laser ablation in liquid followed by laser fragmentation in liquid.The novel integrated laser-assisted methodology succeeded in producing Pt_(Х)Y nanoparticles with the ideal size(<10 nm)of commercial Pt catalysts,yet resulting remarkably more active with E_(1/2)=0.943 V vs.RHE,specific activity=1095μA cm^(-2) and mass activity>1000 A g^(-1).At the same time,the nanoalloys are embedded in a fine Pt oxide matrix,which allows a greater stability of the catalyst than the commercial Pt reference,as directly verified on a gas diffusion electrode.
基金financially supported by the DNL Cooperation Fund,CAS (DNL202002)the National Natural Science Foundation of China (22102180)+3 种基金the CAS Project for Young Scientists in Basic Research,(YSBR-022)the Key Research Program of Frontier Sciences,CAS (ZDBS-LY-7012)Liao Ning Revitalization Talents Program (XLYC2007070)the Fundamental Research Funds for the Central Universities (20720220009)。
文摘Pt-based catalysts are the typical industrial catalysts for propane dehydrogenation(PDH),which still suffer from insufficient lo ng-term durability due to the structu ral instability and coke deposition.A commercial γ-Al_(2)O_(3) supported thermally robust sub-nanometer Pt2In3intermetallic catalyst with atomically ordered structure and rigorously separated Pt single atoms was fabricated,which showed outstanding robustness in 240 h long-term operation at 600℃ with the deactivation rate constant kdas low as0.00078 h^(-1), ranking among the lowest reported values.Based on various in situ characterizations and theoretical calculations,it was proved that the catalyst stability not only resulted from the separated Pt single-atom sites but also significantly affected by the distance of adjacent Pt atoms.An increasing distance to 3.25 A in the Pt_(2)In_(3)could induce a weak π-adsorption configuration of propylene on Pt sites,which facilitated the desorption of propylene and restrained the side reactions like coking.
基金support from the National Key Research and Development Program of China(No.2021YFA1500900)the National Natural Science Foundation of China(Nos.21832003,21972061,52071174)+2 种基金the Natural Science Foundation of Jiangsu Province,Major Project(No.BK20212005)China Postdoctoral Science Foundation(No.2022M711564)the Fellowship of China National Postdoctoral Program for Innovative Talents(No.BX2021119).
文摘Glycerol is an alternative sustainable fuel for fuel cells,and efficient electrocatalyst is crucial for glycerol oxidation reaction(GOR).The promising Pt catalysts are subject to the inadequate capability of C-C bond cleavage and the susceptibility to poisoning.Herein,Pt-Sn alloyed nanoparticles are immobilized on hierarchical nitrogen-doped carbon nanocages(hNCNCs)by convenient ethylene glycol reduction and subsequent thermal reduction.The optimal Pt_(3)Sn/hNCNC catalyst exhibits excellent GOR performance with a high mass activity(5.9 A·mg_(Pt)^(-1)),which is 2.7 and 5.4 times higher than that of Pt/hNCNC and commercial Pt/C,respectively.Such an enhancement can be mainly ascribed to the increased anti-poisoning and C-C bond cleavage capability due to the Pt_(3)Sn alloying effect and Sn-enriched surface,the high dispersion of Pt_(3)Sn active species due to N-participation,as well as the high accessibility of Pt_(3)Sn active species due to the three-dimensional(3D)hierarchical architecture of hNCNC.This study provides an effective GOR electrocatalyst and convenient approach for catalyst preparation.
基金supported by the Beijing Natural Science Foundation(Grant No.Z200012)National Natural Science Foundation of China(Grant Nos.22075290,21972068,21776292,21706265)+1 种基金State Key Laboratory of Multiphase Complex Systems,Institute of Process Engineering,Chinese Academy of Sciences(MPCS-2019-A-09)Nanjing IPE Institute of Green Manufacturing Industry are gratefully acknowledged.
文摘Heterogeneous nanocomposites comprising chemically distinct constituents are particularly promising in electrocatalysis.We herein report a synthetic strategy that combines the reduction of Pt and Co ionic precursors at an appropriate ratio with the subsequent phosphating at an elevated temperature for forming heterogeneous nanocomposites consisting of quasi-spherical Pt_(3)Co alloy domains and rod-like CoP_(2) domains for high-efficiency methanol electrooxidation.The strong electronic coupling between Pt_(3)Co and CoP_(2) domains in the nanocomposites render the electron density around Pt atoms to decrease,which is favorable for reducing the adsorption of poisoning CO-like intermediates on the catalyst surfaces.Accordingly,the as-prepared heterogeneous Pt_(3)Co–CoP_(2) nanocomposites show good performance for methanol electrooxidation both in acidic and alkaline media.In specific,at a Pt loading of only 6.4%on a common carbon substrate,the mass-based activity of Pt_(3)Co–CoP_(2) nanocomposites in an acidic medium is about 2 and 1.5 times as high as that of commercial Pt/C catalyst(20%mass loading)and home-made Pt_(3)Co alloy nanoparticles(8.0%mass loading),while in the alkaline medium,these values are 3 and 2,respectively.
基金Thanks for the financial support of the National Key R&D Program of China(Nos.2021YFB3200700 and 2016YFC1100502)the National Natural Science Foundation of China(Nos.21875260 and 21671193)+3 种基金Beijing Nature Science Foundation(No.2202069)Zhongguancun Open Laboratory Concept Verification Project(No.202205229)the Foundation of State Key Laboratory of Digital Manufacturing Equipment and Technology(No.DMETKF2022004)the China Science and Technology Cloud for calculation support.
文摘The development of an efficient Pt-based electrocatalyst in acidic and alkaline electrolytes is of great significance to the field of electrocatalytic hydrogen evolution.Herein,we report a strategy for in situ growth of Pt_(3)Ni truncated octahedrons on Ti3C2Tx nanosheets and then obtain an ordered porous catalyst via a template method.Meanwhile,we use the finite element calculation to clarify the relationship between the component structure and performance and find that the performance of the spherical shell microstructure catalyst is higher than that of the disc structure catalyst,which is also verified by experiments.The experimental analysis shows that the ordered porous catalyst is conducive to enhancing electrocatalytic hydrogen evolution activity in acidic and alkaline electrolytes.In an acidic solution,the overpotential is 25 mV(10 mA·cm^(−2)),and the Tafel slope is 22.86 mV·dec−1.In an alkaline solution,the overpotential is 44.1 mV(10 mA·cm^(−2)),and the Tafel slope is 39.06 mV·dec−1.The synergistic coupling between Ti3C2Tx and Pt_(3)Ni nanoparticles improves the stability of the catalyst.The in situ growth strategy and design of microstructure with its correlation with catalytic performance represent critical steps toward the rational synthesis of catalysts with excellent catalytic activity.