From the perspective of regulatory focus theory,the influencing mechanism of pro-environmental behaviors(PEBs)in the private domain on behaviors in the public domain were analyzed by revealing the mediating ef‐fect o...From the perspective of regulatory focus theory,the influencing mechanism of pro-environmental behaviors(PEBs)in the private domain on behaviors in the public domain were analyzed by revealing the mediating ef‐fect of the status quo maintenance and the moderating effect of the prevention focus orientation.The study re‐sults show that PEBs in the private domain significantly promote individuals’PEBs in the public domain.The status quo maintenance partially mediates the relationship between PEBs in the private and public domains.Specifically,individuals with a high-level prevention focus orientation strengthen the relationship between the PEBs in the private domain and the status quo maintenance,and that of the PEBs in the public domain.There‐fore,individuals with a high-level prevention focus will more likely engage in subsequent PEBs in the public domain after their initial PEBs in the private domain due to their increased status quo maintenance degree.Policymakers and practitioners should pay attention to the prevention-repetition effect and use the PEBs in the private domain to promote those in the public domain.展开更多
This article studies the effective traffic signal control problem of multiple intersections in a city-level traffic system.A novel regional multi-agent cooperative reinforcement learning algorithm called RegionSTLight...This article studies the effective traffic signal control problem of multiple intersections in a city-level traffic system.A novel regional multi-agent cooperative reinforcement learning algorithm called RegionSTLight is proposed to improve the traffic efficiency.Firstly a regional multi-agent Q-learning framework is proposed,which can equivalently decompose the global Q value of the traffic system into the local values of several regions Based on the framework and the idea of human-machine cooperation,a dynamic zoning method is designed to divide the traffic network into several strong-coupled regions according to realtime traffic flow densities.In order to achieve better cooperation inside each region,a lightweight spatio-temporal fusion feature extraction network is designed.The experiments in synthetic real-world and city-level scenarios show that the proposed RegionS TLight converges more quickly,is more stable,and obtains better asymptotic performance compared to state-of-theart models.展开更多
Land transport can no longer meet the requirements.European transport can be described by these words−crowded motorways and cities,dangerous emissions,ubiquitous traffic accidents,delays,expensive railways.Solutions a...Land transport can no longer meet the requirements.European transport can be described by these words−crowded motorways and cities,dangerous emissions,ubiquitous traffic accidents,delays,expensive railways.Solutions are being sought to transfer a large part of passengers and especially freight transport to(high-speed)rail,and efforts are moving towards electromobility,car-sharing,5G-connectivity,autonomous driving,MaaS(Mobility as a Service)-coordinated transport or hyperloop-type solutions.However,all these solutions have additional challenges and limitations.Solutions are not being searched where they really exist-in the mutual adaptation of road and rail vehicles and their deep cooperation.The ComplexTrans project shows that simply adapting the dimensions and functions of road and rail vehicles can eliminate(or at least significantly reduce)all the problems of existing land transport.The main features of the ComplexTrans system are sufficient parking spaces,reduction of urban and non-urban congestion,electric vehicles with unlimited range and cheaper than standard cars,cheaper and more accessible battery charging,“autonomous ride”,solving the overlap between passenger and freight rail transport and making it self-financing,transferring intercity freight transport to rail,replacing part of continental air transport and many others.The cost-effective and clustered individual transport and individualised public transport of the ComplexTrans system also bring very significant reductions in the risk of transmission of covid-19 and other contagious diseases during transport.展开更多
Heterogeneous network (Het-Net) is part of the long-term evolution advanced (LTE-A) study item and represents cellular deployments with a mixture of cells of different overlapping coverage areas, e.g., a number of...Heterogeneous network (Het-Net) is part of the long-term evolution advanced (LTE-A) study item and represents cellular deployments with a mixture of cells of different overlapping coverage areas, e.g., a number of relay and pico cells overlaid by a macro cell in the same frequency. Traffic balancing and interference management are required in Het-Net design for LTE-A to maintain system performance. In this paper, we propose an inter-domain cooperative traffic balancing scheme focusing on reducing the effective resource cost and mitigating the co-channel interference in multi-domain Het-Net. We first set up the conception of multi-domain in Het-Net and incorporate the co-channel interference into the proposed traffic balancing scheme. Then we model the traffic balancing issue as a multi-domain traffic resource optimization problem for minimizing the effective resource cost. The detailed implementation for the proposed traffic balancing scheme is designed. In the numerical evaluation, the genetic algorithm (GA) as an optimization method is used to demonstrate that the total effective resource cost is significantly reduced through our proposed inter-domain traffic balancing scheme, comparing with the intra-domain traffic balancing scheme. The 43% of the resource cost is saved. In the system level simulation, the performance results of signal interference noise ratio (SINR) and throughput demonstrate that the proposed scheme has great advantages in interference management in Het-Net.展开更多
基金support provided by the Zhejiang Province Planning Project of Philosophy and Social Science[Grant No.22NDJC107YB]Zhejiang Provincial Natural Science Foundation of China[Grant No.LY21G020009].
文摘From the perspective of regulatory focus theory,the influencing mechanism of pro-environmental behaviors(PEBs)in the private domain on behaviors in the public domain were analyzed by revealing the mediating ef‐fect of the status quo maintenance and the moderating effect of the prevention focus orientation.The study re‐sults show that PEBs in the private domain significantly promote individuals’PEBs in the public domain.The status quo maintenance partially mediates the relationship between PEBs in the private and public domains.Specifically,individuals with a high-level prevention focus orientation strengthen the relationship between the PEBs in the private domain and the status quo maintenance,and that of the PEBs in the public domain.There‐fore,individuals with a high-level prevention focus will more likely engage in subsequent PEBs in the public domain after their initial PEBs in the private domain due to their increased status quo maintenance degree.Policymakers and practitioners should pay attention to the prevention-repetition effect and use the PEBs in the private domain to promote those in the public domain.
基金supported by the National Science and Technology Major Project (2021ZD0112702)the National Natural Science Foundation (NNSF)of China (62373100,62233003)the Natural Science Foundation of Jiangsu Province of China (BK20202006)。
文摘This article studies the effective traffic signal control problem of multiple intersections in a city-level traffic system.A novel regional multi-agent cooperative reinforcement learning algorithm called RegionSTLight is proposed to improve the traffic efficiency.Firstly a regional multi-agent Q-learning framework is proposed,which can equivalently decompose the global Q value of the traffic system into the local values of several regions Based on the framework and the idea of human-machine cooperation,a dynamic zoning method is designed to divide the traffic network into several strong-coupled regions according to realtime traffic flow densities.In order to achieve better cooperation inside each region,a lightweight spatio-temporal fusion feature extraction network is designed.The experiments in synthetic real-world and city-level scenarios show that the proposed RegionS TLight converges more quickly,is more stable,and obtains better asymptotic performance compared to state-of-theart models.
基金This research is partly supported by project SGS-2019-001The 3-D visualisations were prepared by students of University of West Bohemia or by professional designers.
文摘Land transport can no longer meet the requirements.European transport can be described by these words−crowded motorways and cities,dangerous emissions,ubiquitous traffic accidents,delays,expensive railways.Solutions are being sought to transfer a large part of passengers and especially freight transport to(high-speed)rail,and efforts are moving towards electromobility,car-sharing,5G-connectivity,autonomous driving,MaaS(Mobility as a Service)-coordinated transport or hyperloop-type solutions.However,all these solutions have additional challenges and limitations.Solutions are not being searched where they really exist-in the mutual adaptation of road and rail vehicles and their deep cooperation.The ComplexTrans project shows that simply adapting the dimensions and functions of road and rail vehicles can eliminate(or at least significantly reduce)all the problems of existing land transport.The main features of the ComplexTrans system are sufficient parking spaces,reduction of urban and non-urban congestion,electric vehicles with unlimited range and cheaper than standard cars,cheaper and more accessible battery charging,“autonomous ride”,solving the overlap between passenger and freight rail transport and making it self-financing,transferring intercity freight transport to rail,replacing part of continental air transport and many others.The cost-effective and clustered individual transport and individualised public transport of the ComplexTrans system also bring very significant reductions in the risk of transmission of covid-19 and other contagious diseases during transport.
基金supported by the National Natural Science Foundation of China (60961004/F0104)
文摘Heterogeneous network (Het-Net) is part of the long-term evolution advanced (LTE-A) study item and represents cellular deployments with a mixture of cells of different overlapping coverage areas, e.g., a number of relay and pico cells overlaid by a macro cell in the same frequency. Traffic balancing and interference management are required in Het-Net design for LTE-A to maintain system performance. In this paper, we propose an inter-domain cooperative traffic balancing scheme focusing on reducing the effective resource cost and mitigating the co-channel interference in multi-domain Het-Net. We first set up the conception of multi-domain in Het-Net and incorporate the co-channel interference into the proposed traffic balancing scheme. Then we model the traffic balancing issue as a multi-domain traffic resource optimization problem for minimizing the effective resource cost. The detailed implementation for the proposed traffic balancing scheme is designed. In the numerical evaluation, the genetic algorithm (GA) as an optimization method is used to demonstrate that the total effective resource cost is significantly reduced through our proposed inter-domain traffic balancing scheme, comparing with the intra-domain traffic balancing scheme. The 43% of the resource cost is saved. In the system level simulation, the performance results of signal interference noise ratio (SINR) and throughput demonstrate that the proposed scheme has great advantages in interference management in Het-Net.