A device for supporting soft rock masses combined with a constant resistance structure characterized by constant resistance and large deformation at the end of a steel bar, known as the constant resistance and large d...A device for supporting soft rock masses combined with a constant resistance structure characterized by constant resistance and large deformation at the end of a steel bar, known as the constant resistance and large deformation(CRLD) bolt, has recently been developed to counteract soft rock swelling that often occurs during deep mining. In order to further study the mechanical properties of the CRLD bolt, we investigated its mechanical properties by comparison with the conventional strength bolt(rebar) using static pull tests on many aspects, including supporting capacity, elongation, radial deformation, and energy absorption. The tests verified that the mechanical defects of the rebar, which include the decrease of bolt diameter, reduction of supporting capacity, and emergence and evolution of fracture until failure during the whole pull process, were caused by the Poisson's ratio effect. Due to the special structure set on the CRLD bolt, the bolt presents a seemingly unusual phenomenon of the negative Poisson's ratio effect, i.e., the diameter of the constant resistance structure increases while under-pulling. It is the very effect that ensures the extraordinary mechanical properties, including high resistance, large elongation, and strong energy absorption. According to the comparison and analysis of numerical simulation and field test, we can conclude that the CRLD bolt works better than the rebar bolt.展开更多
Laboratory pull-out tests were conducted on the following rock bolts and cable bolts:steel rebars,smooth steel bars,fiberglass reinforced polymer threaded bolts,flexible cable bolts,IR5/IN special cable bolts and Mini...Laboratory pull-out tests were conducted on the following rock bolts and cable bolts:steel rebars,smooth steel bars,fiberglass reinforced polymer threaded bolts,flexible cable bolts,IR5/IN special cable bolts and Mini-cage cable bolts.The diameter of the tested bolts was between 16 mm and 26 mm.The bolts were grouted in a sandstone sample using resin or cement grouts.The tests were conducted under either constant radial stiffness or constant confining pressure boundary conditions applied on the outer surface of the rock sample.In most tests,the rate of displacement was about 0.02 mm/s.The tests were performed using a pull-out bench that allows testing a wide range of parameters.This paper provides an extensive database of laboratory pull-out test results and confirms the influence of the confining pressure and the embedment length on the pull-out response(rock bolts and cable bolts).It also highlights the sensitivity of the results to the operating conditions and to the behavior of the sample as a whole,which cannot be neglected when the test results are used to assess the bolt-grout or the grouterock interface.展开更多
Background: Test-retest strength reliability of the Electronic Push/Pull Dynamometer (EPPD) in the measurement of the extensor and flexor muscles on a new constructed chair. The objective of the study was to assess re...Background: Test-retest strength reliability of the Electronic Push/Pull Dynamometer (EPPD) in the measurement of the extensor and flexor muscles on a new constructed chair. The objective of the study was to assess reliability of Electronic Push/Pull Dynamometer in the measurement of the knee flexion and extension at 90° and 60° on a new constructed chair. The aims of the author: To assess reliability of Electronic Push/Pull Dynamometer in the measurement of the knee flexion and extension at 90° and 60° on a new constructed chair. Design: A test-retest reliability study. Subjects: One hundred healthy students male and female (mean age, 21y). Methods: Maximum isometric strength of the quadriceps and hamstring muscle groups was measured using the EPPD were recorded at 60° and 90° for 3 trials on 2 occasions. Reliability was assessed with the Intraclass correlation coefficient (ICC), mean and standard deviation (SD) of measurements, and smallest real differences were calculated for the maximum and for the mean and work of the 3 repetitions. Results: Mean strength ranged from 50.44 kg for knee flexion to 55.76 kg for knee extension 50.44 kg to 61.98 kg at 90° hip flexion. Test-retest reliability Intraclass correlation coefficients (ICCs) ranged from 0.85 to 0.99. ICCs for test-retest reliability ranged from 0.780 to 0.998. Conclusions: The results of the reliability study indicate that the EPPD in reliable dynamometer to use in determining lower limb muscle force production. It can be used to measure disease progression and to evaluate changes in knee extension and flexion strength at the individual patient level.展开更多
基金supported by National Key Research and Development Program(2016YFC0600901)the National Natural Science Foundation of China(Grant Nos.51374214,51134005 and 51574248)+1 种基金the Special Fund of Basic Research and Operating of China University of Mining&Technology,Beijing(Grant Nos.2009QL03)the State Scholarship Fund of China
文摘A device for supporting soft rock masses combined with a constant resistance structure characterized by constant resistance and large deformation at the end of a steel bar, known as the constant resistance and large deformation(CRLD) bolt, has recently been developed to counteract soft rock swelling that often occurs during deep mining. In order to further study the mechanical properties of the CRLD bolt, we investigated its mechanical properties by comparison with the conventional strength bolt(rebar) using static pull tests on many aspects, including supporting capacity, elongation, radial deformation, and energy absorption. The tests verified that the mechanical defects of the rebar, which include the decrease of bolt diameter, reduction of supporting capacity, and emergence and evolution of fracture until failure during the whole pull process, were caused by the Poisson's ratio effect. Due to the special structure set on the CRLD bolt, the bolt presents a seemingly unusual phenomenon of the negative Poisson's ratio effect, i.e., the diameter of the constant resistance structure increases while under-pulling. It is the very effect that ensures the extraordinary mechanical properties, including high resistance, large elongation, and strong energy absorption. According to the comparison and analysis of numerical simulation and field test, we can conclude that the CRLD bolt works better than the rebar bolt.
基金supported by the European Research Fund for Coal and Steel in the AMSSTED Programme RFCR-CT-2013-00001
文摘Laboratory pull-out tests were conducted on the following rock bolts and cable bolts:steel rebars,smooth steel bars,fiberglass reinforced polymer threaded bolts,flexible cable bolts,IR5/IN special cable bolts and Mini-cage cable bolts.The diameter of the tested bolts was between 16 mm and 26 mm.The bolts were grouted in a sandstone sample using resin or cement grouts.The tests were conducted under either constant radial stiffness or constant confining pressure boundary conditions applied on the outer surface of the rock sample.In most tests,the rate of displacement was about 0.02 mm/s.The tests were performed using a pull-out bench that allows testing a wide range of parameters.This paper provides an extensive database of laboratory pull-out test results and confirms the influence of the confining pressure and the embedment length on the pull-out response(rock bolts and cable bolts).It also highlights the sensitivity of the results to the operating conditions and to the behavior of the sample as a whole,which cannot be neglected when the test results are used to assess the bolt-grout or the grouterock interface.
文摘Background: Test-retest strength reliability of the Electronic Push/Pull Dynamometer (EPPD) in the measurement of the extensor and flexor muscles on a new constructed chair. The objective of the study was to assess reliability of Electronic Push/Pull Dynamometer in the measurement of the knee flexion and extension at 90° and 60° on a new constructed chair. The aims of the author: To assess reliability of Electronic Push/Pull Dynamometer in the measurement of the knee flexion and extension at 90° and 60° on a new constructed chair. Design: A test-retest reliability study. Subjects: One hundred healthy students male and female (mean age, 21y). Methods: Maximum isometric strength of the quadriceps and hamstring muscle groups was measured using the EPPD were recorded at 60° and 90° for 3 trials on 2 occasions. Reliability was assessed with the Intraclass correlation coefficient (ICC), mean and standard deviation (SD) of measurements, and smallest real differences were calculated for the maximum and for the mean and work of the 3 repetitions. Results: Mean strength ranged from 50.44 kg for knee flexion to 55.76 kg for knee extension 50.44 kg to 61.98 kg at 90° hip flexion. Test-retest reliability Intraclass correlation coefficients (ICCs) ranged from 0.85 to 0.99. ICCs for test-retest reliability ranged from 0.780 to 0.998. Conclusions: The results of the reliability study indicate that the EPPD in reliable dynamometer to use in determining lower limb muscle force production. It can be used to measure disease progression and to evaluate changes in knee extension and flexion strength at the individual patient level.