期刊文献+
共找到1,029篇文章
< 1 2 52 >
每页显示 20 50 100
NR4A1 enhances glycolysis in hypoxia-exposed pulmonary artery smooth muscle cells by upregulating HIF-1αexpression
1
作者 CHENYANG CHEN JUAN WEN +1 位作者 WEI HUANG JIANG LI 《BIOCELL》 SCIE 2023年第11期2423-2433,共11页
Background:Pulmonary arterial hypertension(PAH)is a chronic and progressive disease that is strongly associated with dysregulation of glucose metabolism.Alterations in nuclear receptor subfamily 4 group A member 1(NR4... Background:Pulmonary arterial hypertension(PAH)is a chronic and progressive disease that is strongly associated with dysregulation of glucose metabolism.Alterations in nuclear receptor subfamily 4 group A member 1(NR4A1)activity alter the outcome of PAH.This study aimed to investigate the effects of NR4A1 on glycolysis in PAH and its underlying mechanisms.Methods:This study included twenty healthy volunteers and twenty-three PAH patients,and plasma samples were collected from the participants.To mimic the conditions of PAH in vitro,a hypoxia-induced model of pulmonary artery smooth muscle cell(PASMC)model was established.The proliferation of PASMCs was assessed using CCK8 assays.Results:Levels of NR4A1,hypoxia-inducible factor-1α(HIF-1α),and various glycolysis-related enzymes were measured.In addition,extracellular glucose and lactate production were assessed.The interaction between NR4A1 and HIF-1αwas evaluated by co-immunoprecipitation assays.Levels of NR4A1 and HIF-1αwas increased in PAH patients,and exposure to hypoxia resulted in increased levels of NR4A1 and HIF-1αin PASMCs.NR4A1 interacted with HIF-1α.NR4A1 overexpression enhanced hypoxia-induced expression of HIF-1α,GLUT1,PKM2,HK2,and CD36,decreased glucose levels,increased lactate levels and promoted hypoxic PASMC viability.Conversely,silencing NR4A1 decreased hypoxia-induced expression of HIF-1α,GLUT1,PKM2,HK2,and CD36,promoted glucose production,reduced lactate levels and inhibited hypoxic PASMC viability.Furthermore,overexpression of HIF-1αreversed the regulation of glycolysis caused by NR4A1 knockdown.Conclusion:NR4A1 enhances glycolysis in hypoxia-induced PASMCs by upregulating HIF-1α.Our findings indicate that the management of NR4A1 activity may be a promising strategy for PAH therapy. 展开更多
关键词 pulmonary arterial hypertension NR4A1 HIF-1Α GLYCOLYSIS HYPOXIA pulmonary arterial smooth muscle cells
下载PDF
Inhibitory Effect of PPARδAgonist GW501516 on Proliferation of Hypoxia-induced Pulmonary Arterial Smooth Muscle Cells by Regulating the mTOR Pathway
2
作者 Chang-gui CHEN Chun-feng YI +5 位作者 Chang-fa CHEN Li-qun TIAN Li-wei LI Li YANG Zuo-min LI Li-qun HE 《Current Medical Science》 SCIE CAS 2023年第5期979-987,共9页
Objective This study aimed to investigate the effects of the peroxisome proliferator-activated receptorδ(PPARδ)agonist GW501516 on the proliferation of pulmonary artery smooth muscle cells(PASMCs)induced by hypoxia,... Objective This study aimed to investigate the effects of the peroxisome proliferator-activated receptorδ(PPARδ)agonist GW501516 on the proliferation of pulmonary artery smooth muscle cells(PASMCs)induced by hypoxia,in order to search for new drugs for the treatment and prevention of pulmonary vascular remodeling.Methods PASMCs were incubated with different concentrations of GW501516(10,30,100 nmol/L)under the hypoxic condition.The proliferation was determined by a CCK-8 assay.The cell cycle progression was analyzed by flow cytometry.The expression of PPARδ,S phase kinase-associated protein 2(Skp2),and cell cycle-dependent kinase inhibitor p27 was detected by Western blotting.Then PASMCs were treated with 100 nmol/L GW501516,100 nmol/L mammalian target of rapamycin(mTOR)inhibitor rapamycin and/or 2µmol/L mTOR activator MHY1485 to explore the molecular mechanisms by which GW501516 reduces the proliferation of PASMCs.Results The presented data demonstrated that hypoxia reduced the expression of PPARδin an oxygen concentration-and time-dependent manner,and GW501516 decreased the proliferation of PASMCs induced by hypoxia by blocking the progression through the G0/G1 to S phase of the cell cycle.In accordance with these findings,GW501516 downregulated Skp2 and upregulated p27 in hypoxia-exposed PASMCs.Further experiments showed that rapamycin had similar effects as GW501516 in inhibiting cell proliferation,arresting the cell cycle,regulating the expression of Skp2 and p27,and inactivating mTOR in hypoxia-exposed PASMCs.Moreover,MHY1485 reversed all the beneficial effects of GW501516 on hypoxia-stimulated PASMCs.Conclusion GW501516 inhibited the proliferation of PASMCs induced by hypoxia through blocking the mTOR/Skp2/p27 signaling pathway. 展开更多
关键词 peroxisome proliferator-activated receptorδ GW501516 HYPOXIA pulmonary artery smooth muscle cells PROLIFERATION mammalian target of rapamycin
下载PDF
The Effect of Erigeron Breviscapus on Proliferation of Pulmonary Artery Smooth Muscle Cells in Hypoxic Porcines 被引量:2
3
作者 丁毅鹏 徐永健 张珍祥 《Journal of Huazhong University of Science and Technology(Medical Sciences)》 SCIE CAS 2001年第3期206-208,共3页
In order to study the effect of Erigeron Breviscapus (EB) on proliferation of pulmonary artery smooth muscle cells (PASMC) in hypoxic porcines, immunohistochemical and MTT methods were employed to measure the prolifer... In order to study the effect of Erigeron Breviscapus (EB) on proliferation of pulmonary artery smooth muscle cells (PASMC) in hypoxic porcines, immunohistochemical and MTT methods were employed to measure the proliferation of PASMC. It was found that the proliferation of PASMC in porcines was obvious, and the expression of proliferating cell nuclear antigen (PCNA) was significantly high within 48 h after exposure to hypoxia. The EB could inhibit the proliferation and the expression of PCNA in PASMC under hypoxia, but it had no effect on the proliferation and expression of PCNA in PASMC under normal condition. The EB could inhibit the proliferation and the expression of PCNA in PASMC induced by phorbol 12-myristate 13-acetate (PMA), an agonist of PKC in normal and hypoxic conditions. It was concluded that the hypoxia could enhance the proliferation and expression of PCNA in PASMC. The EB can inhibit the proliferation and expression of PCNA in PASMC under hypoxia through PKC-signal way. The EB may be used in treating the pulmonary hypertension by inhibiting the proliferation of PASMC and the pulmonary vascular remodeling. 展开更多
关键词 erigeron breviscapus HYPOXIA pulmonary artery smooth muscle cell PROLIFERATION
下载PDF
Relationship of Intracellular Free Ca^(2+) Concentration and Calcium-activated Chloride Channels of Pulmonary Artery Smooth Muscle Cells in Rats under Hypoxic Conditions 被引量:2
4
作者 杨朝 张珍祥 +2 位作者 徐永健 李亚清 叶涛 《Journal of Huazhong University of Science and Technology(Medical Sciences)》 SCIE CAS 2006年第2期172-174,191,共4页
To investigate the relationship between intracellular free Ca^2+ concentration ([Ca^2+ ]i ) and calcium-activated chloride (Clca) channels of pulmonary artery smooth muscle cells (PASMCs) in rats under acute a... To investigate the relationship between intracellular free Ca^2+ concentration ([Ca^2+ ]i ) and calcium-activated chloride (Clca) channels of pulmonary artery smooth muscle cells (PASMCs) in rats under acute and chronic hypoxic conditions, acute hypoxia-induced contraction was observed in rat pulmonary artery by using routine blood vascular perfusion in vitro. The fluorescence Ca^2+ indicator Fura-2/AM was used to observe [Ca^2+ ]i of rat PASMCs under normal and chronic hypoxic condition. The effect of Clca channels on PASMCs proliferation was assessed by MTT assay. The Clca channel blockers niflumic acid (NFA) and indaryloxyacetic acid (IAA-94) exerted inhibitory effects on acute hypoxia-evoked contractions in the pulmonary artery. Under chronic hypoxic condition, [Ca^2+ ]i was increased. Under normoxic condition, [Ca^2+ If was (123.634-18.98) nmol/ L, and in hypoxic condition, [Ca^2+]i wag (281. 754-16.48) nmol/L (P〈0. 01). Under normoxic condition, [Ca^2+ ]i showed no significant change and no effect on Clca channels was observed (P〉 0. 05). Chronic hypoxia increased [Ca^2+ ]i which opened Clca channels. The NFA and IAA-94 blocked the channels and decreased [Ca^2+ ]i from (281.75± 16.48) nmot/L to (117.66 ±15.36) nmol/L (P〈0.01). MTT assay showed that under chronic hypoxic condition NFA and IAA-94 decreased the value of absorbency (A value) from 0. 459±0. 058 to 0. 224±0. 025 (P〈0. 01). Hypoxia increased [Ca^2+ ]i which opened Cl~ channels and had a positive-feedback in [Ca^2+ ]i. This may play an important role in hypoxic pulmonary hypertension. Under chronic hypoxic condition, Clca channel may play a part in the regulation of proliferation of PASMCs. 展开更多
关键词 Ca^2+-activated Cl^- channels intracellular free Ca^2+ concentration pulmonary artery smooth muscle HYPOXIA
下载PDF
Hypoxia Down-regulates Secretion of MMP-2, MMP-9 in Porcine Pulmonary Artery Endothelial and Smooth Muscle Cells and the Role of HIF-1 被引量:1
5
作者 叶红 郑延芳 +4 位作者 马万里 柯丹 金咸瑢 刘声远 王迪浔 《Journal of Huazhong University of Science and Technology(Medical Sciences)》 SCIE CAS 2005年第4期382-384,407,共4页
Summary: Primary cell culture, techniques of gene transfection, gelatin zymography, and Western blot were used to investigate the effect of hypoxia on the secretion of MMP 2 and MMP-9 in pulmonary artery endothelial ... Summary: Primary cell culture, techniques of gene transfection, gelatin zymography, and Western blot were used to investigate the effect of hypoxia on the secretion of MMP 2 and MMP-9 in pulmonary artery endothelial cells (PAEC) and smooth muscle cells (PASMC), and the role of HIF-1. Our results showed that (1) after exposure to hypoxia for 24 h, the protein content and activity of MMP-2 in the PAEC medium as well as these of MMP-2 and MMP-9 in PASMC medium (P〈0. 01 ) decreased significantly in contrast to those in normoxic group (P(0.05) ; (2) after transfection of wild type EPO3' enhancer, a HIF-1 decoy, the content and activity of MMP 2 and MMP-9 in hypoxic mediums became higher than those in normoxic group (P〈0. 01), while transfection of mutant EPO3'-enhancer didn't affect the hypoxia-induced down-regulation. It is concluded that hypoxia could inhibit the secretion and activity of MMP 2 and MMP-9 in PAEC and PASMC, which could he mitigated by the transfection of EPO3 '-enhancer and that H1F-1 pathway might contribute to hypoxia-induced down regulation of MMP-2 and MMP-9. 展开更多
关键词 HYPOXIA pulmonary artery endothelial cells smooth muscle cells MMPs HIF-1
下载PDF
Effects of calcium-activated chloride channels on proliferation of pulmonary artery smooth muscle cells in rats under chronic hypoxic condition 被引量:2
6
作者 Zhao Yang Zhenxiang Zhang Yongjian Xu Tao Wang Dan Ma Tao Ye 《Journal of Nanjing Medical University》 2008年第1期39-43,共5页
Objective:To investigate the effects of calcium-activated chloride (ClCa) channels on proliferation of pulmonary artery smooth muscle cells(PASMCs) in rats under chronic hypoxic condition. Methods:The cultured P... Objective:To investigate the effects of calcium-activated chloride (ClCa) channels on proliferation of pulmonary artery smooth muscle cells(PASMCs) in rats under chronic hypoxic condition. Methods:The cultured PASMCs were placed under normoxic and chronic hypoxic conditions:The cells were observed by light and electron microscope; The cell cycles were observed by flow-cytometry; Immunocytochemistry staining was used to detect the expressions of PCNA, c-fos and c-jun of PASMCs; Cytoplasmic free Ca^2+ concentration ([Ca^2+]i) in PASMCs was investigated by fluorescent quantitation using fluorospectrophotometer. Results:The PASMCs were contractile phenotype under normoxic conditions. Observation by transmission electron microscope: In kytoplasm of contractile phenotype cells, myofilament bundles were abundant and the content of cell organs such as Golgi's bodies were rare. The PASMCs were synthetic phenotype under chronic hypoxic condition. There were increased free ribosomes, dilated rough endoplasmic reticulums, highly developed Golgi complexes, decreased or disappeared thick filaments and dense body in kytoplasm of synthetic phenotype cells. After NFA and IAA-94, the situations were reversed The number of S +G2M PASMCs were significantly increased in chronic hypoxic condition; The NFA and IAA-94 were shown to significantly decrease them from (28.6±1.0)% to (16.0±1.6)% and the number of G0G1 PASMCs significantly increased from (71.4± 1.9)% to (83.9 ± 1.6)% (P〈 0.01). In chronic hypoxic conditions, the expression of proliferating cell nucleus antigen was significantly increased; The NFA and IAA-94 were shown to significantly decrease it from (81 ± 6)% to (27 ± 7)%(P 〈 0.01). The expression of c-fos and c-jun were significantly increased in'chronic hypoxic conditions; The NFA and IAA-94 were shown to significantly decrease them from 0.15 ±0.02, 0.32 ± 0.05 to 0.05 ± 0.01, 0.12 ± 0.05, respectively (P〈 0.01); Under chronic hypoxic conditions, [Ca^2+]i was increased; The NFA and IAA-94 decreased it from (281.8±16,5)nmol/L to (117.7 ± 15.4)nmol/L(P 〈 0.01). Conclusion:Hypoxia initiated the change of PASMCs from contractile to synthetic phenotype and increased proliferation of PASMCs. NFA and IAA-94 depressed cell proliferation by blocking ClCa channels in hypoxic condition. These may play an important role in proliferation of PASMCs under chronic hypoxic conditions. 展开更多
关键词 pulmonary artery smooth muscle cells Ca^2+-activated Cl- channels niflumic acid indaryloxyacetic acid cell proliferation
下载PDF
Involvement of TRPC1 and Cyclin D1 in Human Pulmonary Artery Smooth Muscle Cells Proliferation Induced by Cigarette Smoke Extract 被引量:1
7
作者 Xun WANG Wen WANG +1 位作者 Chan LIU Xiao-jun WU 《Current Medical Science》 SCIE CAS 2020年第6期1085-1091,共7页
Cigarette smoking contributes to the development of pulmonary artery hypertension(PAH).As the basic pathological change of PAH,pulmonary vascular remodeling is considered to be related to the abnormal proliferation of... Cigarette smoking contributes to the development of pulmonary artery hypertension(PAH).As the basic pathological change of PAH,pulmonary vascular remodeling is considered to be related to the abnormal proliferation of pulmonary artery smooth muscle cells(PASMCs).However,the molecular mechanism underlying this process remains not exactly clear.The aim of this research was to study the molecular mechanism of PASMCs proliferation induced by smoking.Human PASMCs(HPASMCs)were divided into 6 groups:0%(control group),cigarette smoking extract(CSE)-treated groups at concentrations of 0.5%,1%,2%,5%,10%CSE respectively.HPASMCs proliferation was observed after 24 h.HPASMCs were divided into two groups:0(control group),0.5%CSE group.The mRNA and protein expression levels of transient receptor potential channel 1(TRPC1)and cyclin D1 in HPASMCs after CSE treatment were respectively detected by RT-PCR and Western blotting.The intracellular calcium ion concentration was measured by the calcium probe in each group.In the negative control group and TRPC1-siRNA transfection group,the proliferation of HPASMCs and the expression of cyclin D1 mRNA and protein were detected.Data were compared with one-way ANOVA(for multiple-group comparison)and independent t-test(for two-group comparison)followed by the least significant difference(LSD)test with the computer software SPSS 17.0.It was found that 0.5%and 1%CSE could promote the proliferation of HPASMCs(P<0.05),and the former was more effective than the latter(P<0.05),while 3%and above CSE had inhibitory effect on HPASMCs(P<0.05).The mRNA and protein expression levels of TRPC1 and cyclin D1 in 0.5%and 1%CSE groups were significantly higher than those in the control group(P<0.05),while those in 3%CSE group were significantly decreased(P<0.05).Moreover,the proliferation of HPASMCs and the expression of cyclin D1 mRNA and protein in TRPC1-siRNA transfection group were significantly reduced as compared with those in the negative control group(P<0.05).It was concluded that low concentration of CSE can promote the proliferation of HPASMCs,while high concentrations of CSE inhibit HPASMCs proliferation.These findings suggested that CSE induced proliferation of HPASMCs at least in part via TRPC1-mediated cyclin D1 expression. 展开更多
关键词 cigarette smoke extract human pulmonary artery smooth muscle cells transient receptor potential channel 1 cyclin D1
下载PDF
Effect of Nuclear Factor-kappa B on Vascular Endothelial Growth Factor mRNA Expression of Human Pulmonary Artery Smooth Muscle Cells in Hypoxia
8
作者 张焕萍 徐永健 +3 位作者 张珍祥 许淑云 倪望 陈士新 《Journal of Huazhong University of Science and Technology(Medical Sciences)》 SCIE CAS 2004年第1期9-12,18,共5页
In order to investigate the effect of nuclear factor kappa B (NF κB) on vascular endothelial growth factor (VEGF) mRNA expression of human pulmonary artery smooth muscle cells (HPASMCs) in hypoxia, the cultured HPA... In order to investigate the effect of nuclear factor kappa B (NF κB) on vascular endothelial growth factor (VEGF) mRNA expression of human pulmonary artery smooth muscle cells (HPASMCs) in hypoxia, the cultured HPASMCs in vitro were stimulated with pyrrolidine dithiocarbamate (PDTC), an inhibitor of NF κB. The NF κB p65 nuclei positive expression was detected by immunocytochemical technique. The IκBα protein expression was measured by Western blot. RT PCR was used to detect the VEGF mRNA expression of HPASMCs. The results showed that no significant change was observed in the NF κB p65 nuclei positive expression of cultured HPASMCs during 6 h-24 h in normoxia, but the levels of NF κB p65 nuclei positive expression of cultured HPASMCs were significantly increased in hypoxia groups as compared with those in all normoxia groups ( P <0.05). The IκBα protein expression of cultured HPASMCs showed no significant change during 6 h-24 h in normoxia, but significantly decreased in hypoxia as comapred with that in normoxia groups ( P <0.05). PDTC (1 to 100 μmol/L) could inhibit the VEGF mRNA expression of HPASMCs in a concentration dependent manner in hypoxia. In conclusion, NF κB can be partly translocation activated from cytoplasm into nuclei in the cultured HPASMCs under hypoxia. The inhibition of NF κB activation can decrease the VEGF mRNA expression. It is suggested that the activation of NF κB is involved in the VEGF mRNA expression of HPASMCs under hypoxia. 展开更多
关键词 HYPOXIA pulmonary artery smooth muscle vascular endothelial growth factor nuclear factor kappa B
下载PDF
Effects of NHE-1 ribozyme gene transfection on apoptosis of rat pulmonary artery smooth muscle cells in vitro
9
作者 陆俊羽 姚伟 +1 位作者 钱桂生 吴国明 《Journal of Medical Colleges of PLA(China)》 CAS 2002年第4期264-269,275,共7页
Objective:To investigate the effects of the transfection of NHE-1 ribozyme gene on the apoptosis of pulmonary artery smooth muscle cells (PASMC) in vitro. Methods: After NHE-1 ribozyme gene was designed, synthesized a... Objective:To investigate the effects of the transfection of NHE-1 ribozyme gene on the apoptosis of pulmonary artery smooth muscle cells (PASMC) in vitro. Methods: After NHE-1 ribozyme gene was designed, synthesized and then cloned into plasmid pLXSN, the recombined plasmid was tansfected into cultured rat PASMC. Expression of NHE-1 mRNA was detected with semi-quantitative RT-PCR. Intracellular pH (pHi) was measured by using fluorescence dye BCECF-AM. Cell cycle was measured with aid of flow cytometric DNA analysis. Cell apoptosis was observed with electron microscopy and terminal deoxynucleotidyl transferase-mediated dUTP nick end labelling (TUNEL) respectively. Results: The NHE-1 mRNA expression level and pHi value were significantly lower in PASMCs transfected with NHE-1 ribozyme gene than those transfected with pLXSN or without transfection. Meanwhile, the apoptosis rate of cells transfected with NHE-1 ribozyme gene was increased significantly. Morphology of cell apoptosis was observed in the cells transfected with NHE-1 ribozyme gene under an electron microscope. Conclusion: The transfection of NHE-1 ribozyme gene induces the apoptosis of PASMCs by inhibiting NHE-1 expression and intracellular acidification. 展开更多
关键词 NHE-1 核酶 基因转染 细胞凋亡 动物实验 体外 pasmc 肺动脉平滑肌细胞
下载PDF
EFFECT OF HYPOXIA ON DNA SYNTHESIS AND C-MYC GENE EXPRESSION OF PULMONARY ARTERY SMOOTH MUSCLE CELLS 
10
作者 罗兰 李世强 蔡英年 《Chinese Medical Sciences Journal》 CAS CSCD 1996年第4期224-227,共4页
EFFECTOFHYPOXIAONDNASYNTHESISANDC-MYCGENEEXPRESSIONOFPULMONARYARTERYSMOOTHMUSCLECELLSLuoLan(罗兰);LiShiqiang(李... EFFECTOFHYPOXIAONDNASYNTHESISANDC-MYCGENEEXPRESSIONOFPULMONARYARTERYSMOOTHMUSCLECELLSLuoLan(罗兰);LiShiqiang(李世强)andCaiYingnian... 展开更多
关键词 肺动脉平滑肌细胞 组织缺氧 DNA合成 C-MYC基因 肺动脉高压
下载PDF
Hypoxia promotes cell proliferation by modulating E2F1 in chicken pulmonary arterial smooth muscle cells
11
作者 Ying Yang Feng Sun +3 位作者 Chen Zhang Hao Wang Guoyao Wu Zhenlong Wu 《Journal of Animal Science and Biotechnology》 SCIE CAS 2013年第3期205-210,共6页
In this study,we sought to investigate the expression of the transcription factor E2F1 in chicken pulmonary arterial smooth muscle cells upon hypoxia exposure,as well as the role that E2F1 played in the regulation of ... In this study,we sought to investigate the expression of the transcription factor E2F1 in chicken pulmonary arterial smooth muscle cells upon hypoxia exposure,as well as the role that E2F1 played in the regulation of cell proliferation.Isolated chicken pulmonary arterial smooth muscle cells were subjected to hypoxia or normoxia for indicated time points.Cell viability,DNA synthesis,cell cycle profile,and expression of E2F1 were analyzed.The results showed that hypoxia promoted cell proliferation and DNA synthesis which was accompanied by an increased S phase entry and upregulation of E2F1 at mRNA and protein levels.Using siRNA technology,we demonstrated that gene inactivation of endogenous E2F1 abolished hypoxia-induced cell proliferation,DNA synthesis,and S phase entry compared with negative siRNA transfected cells.These results suggest that hypoxia-induced proliferation is mediated by inducing E2F1 in chicken pulmonary arterial smooth muscle cells. 展开更多
关键词 E2F1 HYPOXIA Proliferation pulmonary arterial smooth muscle cells
下载PDF
Role of Na^+/H^+ antiporter in pulmonary artery smooth muscle of hypoxic pulmonary hypertension in the rat
12
作者 姚伟 杨晓静 钱桂生 《Journal of Medical Colleges of PLA(China)》 CAS 1999年第1期34-36,67,共4页
Objective: To investigate the role of Na+ /H+ antiporter in the hypoxic pumonary hypertension ofrats. Methods: Thirty Wistar rats were randomly divided into 3 groups with 10 in each group: controlgroup, 3--week hypoxi... Objective: To investigate the role of Na+ /H+ antiporter in the hypoxic pumonary hypertension ofrats. Methods: Thirty Wistar rats were randomly divided into 3 groups with 10 in each group: controlgroup, 3--week hypoxia group and 8--week hypoxia group. After the isolation of pulmonary artery smoothmuscles, pHi was determined by fluorescence measurement of the pH--sensitive dye BCECF and theexpression of NHE--1 mRNA was detected with reverse transcription--polymerase chain reaction. Results: ThepHi and expression of NHE-1 mRNA of pulmonary artery smooth muscle cell in the hypoxia groups weresignificantly increased than those in the normal group (P < 0. 01 ). There was no remarkable differencebetween the hypoxia groups. Conclusion: With the function of regulation pHi., NHE--1 may play an importantrole in the pulmonary vascular remodeling of pulmonary hypertension. The result provides a new therapeuticmethod with NHE--1 inhibitors and/or gene therapy for the hypoxic pulmonary hypertension. 展开更多
关键词 sodium hydrogen ANTIPORTER pulmonary hypertension VASCULAR smooth muscle cell INTRACELLULAR PH
下载PDF
The inhibitory effect of endogenous opioid peptide on the proliferation of pulmonary arterial smooth muscle cells 被引量:1
13
作者 高歌 林树新 +2 位作者 王睿 贾斌 张莉莉 《Journal of Medical Colleges of PLA(China)》 CAS 1998年第1期63-65,共3页
To investigate the effects of endogenous opioid peptides L-enkephalin (L-Enk) and morphine on the proliferation of pulmonary arterial smooth muscle cells (PASMCs) and analyze their mechanism. Methods: Rabbit PASMCs cu... To investigate the effects of endogenous opioid peptides L-enkephalin (L-Enk) and morphine on the proliferation of pulmonary arterial smooth muscle cells (PASMCs) and analyze their mechanism. Methods: Rabbit PASMCs cultured invitro, MTT method and 3 H-TdR incoporation were Used. Results: 1×10-3 -1×10-4 mol/L L-Enk markedly inhibited the proliferation and the DNA synthesis of PALMCs, which could be reversed by naloxone, an opioid receptor antagonist, while orphineseemed to have no obvious effects on the proliferation and the DNA synthesis of PASMCs. Conclusion: Endogenous opioid peptidecan inhibit the proliferation and DNA synthesis of PASMCs, which is mainly mediated through opioid δ receptor and not opioid μreceptor. 展开更多
关键词 smooth muscle cells pulmonary artery L-enkephalin MORPHINE NALOXONE
全文增补中
Iptakalim, a novel ATP-sensitive potassium channel opener, inhibits pulmonary arterial smooth muscle cell proliferation by downregulation of PKC-α 被引量:6
14
作者 Xiangrong Zllo Feng Zong +3 位作者 Hui Wang Qiang Wang Weiping Xie Hong Wang 《The Journal of Biomedical Research》 CAS 2011年第6期392-401,共10页
Iptakalim is a new ATP-sensitive potassium (KATp) channel opener, and it inhibits the proliferation of pulmonary arterial smooth muscle cells (PASMCs) and pulmonary vascular remodeling. However, the underlying mec... Iptakalim is a new ATP-sensitive potassium (KATp) channel opener, and it inhibits the proliferation of pulmonary arterial smooth muscle cells (PASMCs) and pulmonary vascular remodeling. However, the underlying mechanism remains unclear. In the present study, we found that iptakalim significantly decreased pulmonary artery pressure, inhibited pulmonary ariery remodeling and PKC-α overexpression in chronic hypoxia in a rat pulmonary hypertension model. Iptakalim reduced hypoxia-induced expression of PKC-α, and abolished the effect of hypoxia on PASMC proliferation significantly in a dose-dependent manner in vitro. Moreover, these effects were abol- ished by glibenclamide, a selective KArp channel antagonist. These results indicate that iptakalim inhibits PASMC proliferation and pulmonary vascular remodeling induced by hypoxia through downregulating the expression of PKC-α. Iptakalim can serve as a novel promising treatment for hypoxic pulmonary hypertension. 展开更多
关键词 IPTAKALIM pulmonary arterial smooth muscle cells pasmcs) pulmonary hypertension protein kinase C-α (PKC-α) hypoxia proliferation
下载PDF
Efficient differentiation of vascular smooth muscle cells from Wharton's Jelly mesenchymal stromal cells using human platelet lysate: A potential cell source for small blood vessel engineering 被引量:2
15
作者 Panagiotis Mallis Aggeliki Papapanagiotou +5 位作者 Michalis Katsimpoulas Alkiviadis Kostakis Gerasimos Siasos Eva Kassi Catherine Stavropoulos-Giokas Efstathios Michalopoulos 《World Journal of Stem Cells》 SCIE CAS 2020年第3期203-221,共19页
BACKGROUND The development of fully functional small diameter vascular grafts requires both a properly defined vessel conduit and tissue-specific cellular populations.Mesenchymal stromal cells(MSCs) derived from the W... BACKGROUND The development of fully functional small diameter vascular grafts requires both a properly defined vessel conduit and tissue-specific cellular populations.Mesenchymal stromal cells(MSCs) derived from the Wharton's Jelly(WJ) tissue can be used as a source for obtaining vascular smooth muscle cells(VSMCs),while the human umbilical arteries(h UAs) can serve as a scaffold for blood vessel engineering.AIM To develop VSMCs from WJ-MSCs utilizing umbilical cord blood platelet lysate.METHODS WJ-MSCs were isolated and expanded until passage(P) 4. WJ-MSCs were properly defined according to the criteria of the International Society for Cell and Gene Therapy. Then, these cells were differentiated into VSMCs with the use of platelet lysate from umbilical cord blood in combination with ascorbic acid,followed by evaluation at the gene and protein levels. Specifically, gene expression profile analysis of VSMCs for ACTA2, MYH11, TGLN, MYOCD, SOX9,NANOG homeobox, OCT4 and GAPDH, was performed. In addition,immunofluorescence against ACTA2 and MYH11 in combination with DAPI staining was also performed in VSMCs. HUAs were decellularized and served as scaffolds for possible repopulation by VSMCs. Histological and biochemical analyses were performed in repopulated h UAs.RESULTS WJ-MSCs exhibited fibroblastic morphology, successfully differentiating into"osteocytes", "adipocytes" and "chondrocytes", and were characterized by positive expression(> 90%) of CD90, CD73 and CD105. In addition, WJ-MSCs were successfully differentiated into VSMCs with the proposed differentiation protocol. VSMCs successfully expressed ACTA2, MYH11, MYOCD, TGLN and SOX9. Immunofluorescence results indicated the expression of ACTA2 and MYH11 in VSMCs. In order to determine the functionality of VSMCs, h UAs were isolated and decellularized. Based on histological analysis, decellularized h UAs were free of any cellular or nuclear materials, while their extracellular matrix retained intact. Then, repopulation of decellularized h UAs with VSMCs was performed for 3 wk. Decellularized h UAs were repopulated efficiently by the VSMCs. Biochemical analysis revealed the increase of total hydroyproline and s GAG contents in repopulated h UAs with VSMCs. Specifically, total hydroxyproline and s GAG content after the 1 st, 2 nd and 3 rd wk was 71 ± 10, 74 ± 9 and 86 ± 8 μg hydroxyproline/mg of dry tissue weight and 2 ± 1, 3 ± 1 and 3 ± 1μg s GAG/mg of dry tissue weight, respectively. Statistically significant differences were observed between all study groups(P<0.05).CONCLUSION VSMCs were successfully obtained from WJ-MSCs with the proposed differentiation protocol. Furthermore, h UAs were efficiently repopulated by VSMCs. Differentiated VSMCs from WJ-MSCs could provide an alternative source of cells for vascular tissue engineering. 展开更多
关键词 Vascular smooth muscle cells Decellularized UMBILICAL ARTERIES Mesenchymal STROMAL cells MYOCD Cardiovascular disease Blood vessels
下载PDF
Oxidative modification of high density lipoprotein induced by cultured human arterial smooth muscle cells
16
作者 江渝 刘红 +4 位作者 彭家和 叶治家 何凤田 董燕麟 刘秉文 《Journal of Medical Colleges of PLA(China)》 CAS 2003年第2期73-76,共4页
Objective: To observe the oxidative modification of high density lipoprotein (HDL) induced by cultured human arterial smooth muscle cells (SMCs). Methods: HDL cocultured with SMCs at 37℃ in 48 h was subjected, and na... Objective: To observe the oxidative modification of high density lipoprotein (HDL) induced by cultured human arterial smooth muscle cells (SMCs). Methods: HDL cocultured with SMCs at 37℃ in 48 h was subjected, and native HDL (N-HDL) served as control. Oxidative modification of HDL was identified by using agarose gel electrophoresis. Absorbances of conjugated diene (CD) and lipid hydroperoxide (LOOH) were measured with ultraviolet spectrophotometry at 234 and 560 nm respectively, and fluorescence intensity of thiobarbuturic acid reaction substance (TBARS) with fluorescence spectrophotometry at 550 nm emission wavelength with excitation at 515 nm. Results: In comparison with N-HDL, the electrophoretic mobility of SMCs-cocultured HDL was increased, and the contents of CD, LOOH and TBARS HDL were very significantly higher than those of the control HDL (P<0.01). Conclusion: Oxidative modification of HDL can be induced by human arterial SMCs. 展开更多
关键词 人动脉平滑肌细胞 细胞培养 高密度脂蛋白 氧化修饰
下载PDF
用聚乙二醇沉淀法提取脐带间充质干细胞源外泌体抑制PASMCs增殖 被引量:1
17
作者 张雨薇 牛菊红 +5 位作者 刘川川 毛稼琦 张晴晴 刘红 陈英 马兰 《中国高原医学与生物学杂志》 CAS 2023年第4期217-226,共10页
目的用聚乙二醇(PEG 6000)沉淀法提取人脐带间充质干细胞源外泌体(hUCMSCs-exo);观察hUCMSCs-exo对低氧诱导的PASMCs增殖的抑制作用。方法培养人脐带间充质干细胞并鉴定。低速离心提取脐带间充质干细胞培养上清液的hUCMSCs-exo。用透射... 目的用聚乙二醇(PEG 6000)沉淀法提取人脐带间充质干细胞源外泌体(hUCMSCs-exo);观察hUCMSCs-exo对低氧诱导的PASMCs增殖的抑制作用。方法培养人脐带间充质干细胞并鉴定。低速离心提取脐带间充质干细胞培养上清液的hUCMSCs-exo。用透射电子显微镜观察hUCMSCs-exo形态,用考马斯亮蓝及BCA试剂盒检测hUCMSCs-exo蛋白质含量,用Western Blot法检测hUCMSCs-exo表面标记物CD63/Alix/TSG101蛋白的表达水平,用激光共聚焦显微镜观察PASMCs摄取hUCMSCs-exo情况,用EdU法检测hUCMSCs-exo对低氧诱导的大鼠PASMCs增殖的影响,用Western Blot法检测PASMCs核增殖抗原(PCNA)蛋白表达水平,用cck-8法测定用不同浓度hUCMSCs-exo干预低氧诱导后PASMCs的细胞吸光度值。结果通过低速离心成功分离出hUCMSCs-exo。透射电镜下的hUCMSCs-exo为圆形或椭圆形。考马斯亮蓝结果显示,hUCMSCs-exo蛋白条带表达清晰。BCA定量结果显示,PEG 6000溶液浓度为10%时提取的hUCMSCs-exo浓度最高。用激光共聚焦显微镜观察到,用PKH26标记的hUCMSCs-exo能被PASMCs内化。EdU与Western Blot结果显示,hUCMSCs-exo可以抑制PASMCs增殖,P<0.05。cck-8结果显示,hUCMSCs-exo抑制PASMCs增殖,且当hUCMSCs-exo浓度达80μg·mL^(-1)时的细胞吸光度值明显降低,P<0.05。结论PEG 6000沉淀法提取的hUCMSCs-exo可抑制低氧诱导的大鼠PASMCs增殖。 展开更多
关键词 聚乙二醇 沉淀法 人脐带间充质干细胞 外泌体 肺动脉平滑肌细胞 低氧性肺动脉高压
下载PDF
Different Concentrations of Notoginsenoside Rg1 Attenuate Hypoxic and Hypercapnia Pulmonary Hypertension by Reducing the Expression of ERK in Rat PASMCs 被引量:1
18
作者 Congcong Zhang Lixiao Ye +4 位作者 Haizhen Jin Meiping Zhao Mengxiao Zheng Longsheng Song Wantie Wang 《Advances in Biological Chemistry》 2016年第1期12-18,共7页
Pulmonary arterial hypertension (PAH) is a serious disease which is characterized by increased vascular resistance and pressure. We have previously hypothesized that panax notoginseng saponins (PNS) might attenuate pu... Pulmonary arterial hypertension (PAH) is a serious disease which is characterized by increased vascular resistance and pressure. We have previously hypothesized that panax notoginseng saponins (PNS) might attenuate pulmonary vasoconstriction under hypoxia and hypercapnia condition. This study aims to investigate the effect of notoginsenoside R<sub>g1</sub>, a main ingredient of PNS, with various concentrations (8, 40, 100 mg/L, respectively) on extracellular signal regulated kinase (ERK1/2) signaling pathway in pulmonary arterial smooth muscle cells (PASMCs). In addition, PASMCs were randomly divided into six groups: SD rat under normoxic condition as control group (N group), hypoxia hypercapnia group (H group), DMSO control group (HD group), R<sub>g1</sub>-treatment groups (R<sub>gL</sub>R<sub>gM</sub> and R<sub>gH</sub> group). Western-blot and RT-PCR were used to test the expression of p-ERK protein and the expression of ERK1 mRNA and ERK2 mRNA. This study provided the evidence that the expression of p-ERK protein and the expression of ERK1 mRNA and ERK2 mRNA in HD group and H group were obviously higher than that in N group (P < 0.01), Whereas the level of ERK1/2 mRNA in R<sub>g1</sub>-treatment groups was significantly lower than that in HD group and H group (P < 0.01), and the proper concentration of R<sub>g1</sub> is 40 mg/L. These results suggested that notoginsenoside R<sub>g1</sub> can attenuate pulmonary vasoconstriction which may lead to HHPV through reducing the expression of ERK1/2. 展开更多
关键词 pulmonary Arterial smooth muscle cells Hypoxia Hypercapnia ERK1/2 Signal Pathway Notoginsenoside Rg1 Rats
下载PDF
Iododeoxyuridine uptake in proliferating smooth musc le cells:an in vitro model to assess drug effects on intimal hyperplasia 被引量:1
19
作者 Yong-huaXU MandarRJagtap +4 位作者 TamGarland JunYING RonaldCMcGarry MarcSMendonca GordonMcLennan 《中国介入影像与治疗学》 CSCD 2004年第1期71-77,共7页
Purpose To assess the maximum uptake of Iododeo xyur idine (IUdR) by proliferating smooth muscle cells in vitro to determine the opti mal concentration to be administrated in an in vivo experiment. The long-term g oal... Purpose To assess the maximum uptake of Iododeo xyur idine (IUdR) by proliferating smooth muscle cells in vitro to determine the opti mal concentration to be administrated in an in vivo experiment. The long-term g oal is to utilize radioactive IUdR to inhibit smooth muscle cell proliferation a nd restenosis of arteries after balloon angioplasty in vivo. Methods Porcine smooth muscle cells (SMCs) were cultured in 5% FBS medium and stim ulated to proliferate by the addition of medium containing 10% FBS and insulin. IUdR was added at 5 μM, 10 μM, 20 μM, 30 μM, 40 μM, respectively, in prolif erating SMCs with control for 1, 3, 5, 7 day incubation. Fluorescence Activated Cell Scanning (FACS) was performed after the SMCs were harvested and double-sta ined with FITC-conjugated anti-IUdR antibody (B44) and propidium iodide (PI). The ratio of IUdR-labeled cells to total cell population for each IUdR concentr ation and duration was determined by FACS. All data were repeated three times at each time point. The doubling times, growth curve and cell density of the proli ferating SMCs were investigated using Beckman Coulter Particle Counter and digit al microscopy. Results The percentage of proliferating SMCs uptaking IUdR incr eased from 1 to 5 days incubation with all concentrations of IUdR; In day 5, the uptake rate reached the peak value, then decreased by 7 days. IUdR uptake on d ay 5 was higher with concentrations of 10 μM and 20 μM. The doubling times of the SMCs were prolonged with IUdR concentration increasing, while the proliferat ing cell number and density compared with control decreased obviously by day 5 ( P<0.05).Conclusion The peak time to uptake IUdR was 5 days and optimal concentration of IUdR was between10 μM to 20 μM for proliferating SMCs to upta ke in vitro. IUdR itself could inhibit the SMCs’ proliferation and the inhibito ry effect was related to the concentration.[ 展开更多
关键词 平滑肌细胞 细胞扩散 模型 麻醉 增生作用 IUDR
下载PDF
DL0805 derivatives protect the pulmonary arterial cells via the RhoA/ROCK pathway
20
作者 YUAN Tian-yi ZHANG Hui-fang +4 位作者 CHEN Yu-cai JIAO Xiao-zhen XIE Ping FANG Lian-hua DU Guan-hua 《中国药理学与毒理学杂志》 CAS CSCD 北大核心 2016年第10期1011-1011,共1页
OBJECTIVE Pulmonary artery hypertension(PAH)is a severe disease characterized by the mean pulmonary artery pressure exceeding 25 mm Hg at rest.PAH could induce right heart failure and has a very high mortality rate.At... OBJECTIVE Pulmonary artery hypertension(PAH)is a severe disease characterized by the mean pulmonary artery pressure exceeding 25 mm Hg at rest.PAH could induce right heart failure and has a very high mortality rate.At present,several kinds of drugs have been used in the treatment of PAH.However,most of these drugs aim to relax pulmonary arteries and do not inhibit the injury of vessels.In other words,the drugs available for PAH treatment do not improve the survival rate of PAH patients and cannot satisfy the needs in clinic.To discover and develop novel candidate compounds effective on the treatment of pulmonary artery injury and remodeling will be very important.Based on these background,the present study aimed to study the protective effect of two novel Rho-kinases(Rho-associated coiledcoil forming protein serine/threonine kinase,ROCK)inhibitors,DL0805 derivatives(DL0805-1and DL0805-2),on pulmonary arterial cells and further evaluate the underlying mechanisms and the possibility of DL0805 derivatives become therapeutic drugs for PAH.METHODS The primary cultured pulmonary arterial cells including human pulmonary artery endothelium cells(HPAECs)and human pulmonary artery smooth muscle cells(HPASMCs)were used in this study.HPAECs were injured under hypoxia environment(1%O2)and treated with or without DL0805 derivatives.After 48 h,the proliferation and oxidative stress were observed.CCK8 was used to detect cell viability.DCFH-DA was used as probe for reactive oxygen species(ROS)under fluorescence imaging system.HPASMCs was stimulated by growth factors including platelet-derived growth factor-BB(PDGF-BB)and Fetal Bovine Serum(FBS).The proliferation was observed in the cells treated with or without DL0805 derivatives.HPASMCs treated with or without DL0805 derivatives were further incubated with endothelin(ET-1),the proliferation and cytoskeleton remodeling of cells were detected by immunofluorescence assay.At last,Western blotting(WB)and immunofluorescence assay were employed to analysis the underlying mechanisms in the above experiments.RESULTS 10μmol·L-1DL0805-2 could inhibit the proliferation of HPAECs induced by hypoxia.Each concentration of DL0805-1 and DL0805-2attenuated the production of ROS in HPAECs.Results from WB indicated that DL0805 derivatives decreased the injury of HPAECs induced by hypoxia through the inhibition of the expression of Rho A and the activity of ROCK.On HPASMCs,DL0805 derivatives reduced the proliferation induced by PDGF-BB and FBS and inhibited cytoskeleton remodeling induced by ET-1.Immunofluorescence assay showed that DL0805 derivatives inhibited ROCK activity and down regulated the phosphorylation levels of ROCK substrates.CONCLUSION DL0805derivatives exhibited protective effect on pulmonary arterial cells including endothelium cells and smooth muscle cells.Among the above experiments,DL0805-2 showed stronger potency than DL0805-1.These two compounds might protect the cells through the inhibition of Rho A/ROCK pathway and they probably have the potential in the treatment of PAH and deserve further evaluation. 展开更多
关键词 DL0805 derivatives pulmonary artery endothelium cell pulmonary artery smooth muscle cell hypoxia Rho kinases
下载PDF
上一页 1 2 52 下一页 到第
使用帮助 返回顶部