BACKGROUND Mesenchymal stem cells(MSCs)modulated by various exogenous signals have been applied extensively in regenerative medicine research.Notably,nanosecond pulsed electric fields(nsPEFs),characterized by short du...BACKGROUND Mesenchymal stem cells(MSCs)modulated by various exogenous signals have been applied extensively in regenerative medicine research.Notably,nanosecond pulsed electric fields(nsPEFs),characterized by short duration and high strength,significantly influence cell phenotypes and regulate MSCs differentiation via multiple pathways.Consequently,we used transcriptomics to study changes in messenger RNA(mRNA),long noncoding RNA(lncRNA),microRNA(miRNA),and circular RNA expression during nsPEFs application.AIM To explore gene expression profiles and potential transcriptional regulatory mechanisms in MSCs pretreated with nsPEFs.METHODS The impact of nsPEFs on the MSCs transcriptome was investigated through whole transcriptome sequencing.MSCs were pretreated with 5-pulse nsPEFs(100 ns at 10 kV/cm,1 Hz),followed by total RNA isolation.Each transcript was normalized by fragments per kilobase per million.Fold change and difference significance were applied to screen the differentially expressed genes(DEGs).Gene Ontology and Kyoto Encyclopedia of Genes and Genomes analyses were performed to elucidate gene functions,complemented by quantitative polymerase chain reaction verification.RESULTS In total,263 DEGs were discovered,with 92 upregulated and 171 downregulated.DEGs were predominantly enriched in epithelial cell proliferation,osteoblast differentiation,mesenchymal cell differentiation,nuclear division,and wound healing.Regarding cellular components,DEGs are primarily involved in condensed chromosome,chromosomal region,actin cytoskeleton,and kinetochore.From aspect of molecular functions,DEGs are mainly involved in glycosaminoglycan binding,integrin binding,nuclear steroid receptor activity,cytoskeletal motor activity,and steroid binding.Quantitative real-time polymerase chain reaction confirmed targeted transcript regulation.CONCLUSION Our systematic investigation of the wide-ranging transcriptional pattern modulated by nsPEFs revealed the differential expression of 263 mRNAs,2 miRNAs,and 65 lncRNAs.Our study demonstrates that nsPEFs may affect stem cells through several signaling pathways,which are involved in vesicular transport,calcium ion transport,cytoskeleton,and cell differentiation.展开更多
The Gibbs free energy is strongly related to the stability and catalytic function of an enzyme through the energetic changes that occur in the chemical reactions the enzyme catalyzes. In this in silico study, a pulsed...The Gibbs free energy is strongly related to the stability and catalytic function of an enzyme through the energetic changes that occur in the chemical reactions the enzyme catalyzes. In this in silico study, a pulsed electric field was applied to an azoreductase, and its effect on the Gibbs free energy of molecular docking with two dyes was measured. We propose that certain stimuli from a pulsed electric field favor the structural stability of the enzyme by promoting an arrangement in the active site, potentially leading to an enhancement of enzymatic activity overall.展开更多
Background: ESBL-producing strains of Klebsiella pneumoniae, one of the main causes of nosocomial and hospital-acquired infections, are commonly associated with therapeutic impasses. Surveillance of these multidrug-re...Background: ESBL-producing strains of Klebsiella pneumoniae, one of the main causes of nosocomial and hospital-acquired infections, are commonly associated with therapeutic impasses. Surveillance of these multidrug-resistant pathogens is a crucial tool for controlling and preventing infections. This surveillance involves the use of appropriate molecular and phenotypic typing techniques. The choice of techniques is based on criteria such as discriminatory power, intra- and inter-laboratory reproducibility, epidemiological concordance, ease of use and cost. The aim of our study was to identify clusters of Extended-Spectrum Beta-Lactamase-producing Klebsiella pneumoniae (ESBL-K. pneumoniae) strains circulating in neonatology using quantitative antibiogram (QA) and Pulsed Field Gel Electrophoresis (PFGE). Materials and Methods: This cross-sectional study included 55 K. pneumoniae strains isolated from a total of 513 samples. These various samples are taken from newborns, healthcare personnel, and the environment. K. pneumoniae identification followed standard bacteriological procedures and was confirmed using the Vitek® 2 (bioMérieux). The detection of the ESBL phenotype was performed using the synergy test. QA and PFGE were used to identify clonal relationships between the various strains isolated. Concordance between these two methods was assessed by calculating Cohen’s KAPPA coefficient and Simpson’s diversity index. Results: Among the 55 K. pneumoniae strains included in this study, 58.2% (32/55) were found to be Extended-Spectrum Beta-Lactamase (ESBL) producers. Most of these strains were isolated from neonatal samples (blood samples and rectal swabs). The quantitative antibiogram method applied to 28 out of the 32 ESBL-producing strains revealed that the isolates were grouped into 5 clusters. Pulsed Field Gel Electrophoresis performed on a total of 16 ESBL-producing strains showed the existence of four profiles. A perfect concordance was observed between the two methods. Conclusion: The results of this study highlighted the existence of clonal strains of various origins within neonatology units.展开更多
We present a scheme to control the generated ultrafast magnetic field in H_(3)^(2+)molecules using multi-frequency tricircular pulses composed of co-and counter-rotating bicircular pulses.Simulations show that the fie...We present a scheme to control the generated ultrafast magnetic field in H_(3)^(2+)molecules using multi-frequency tricircular pulses composed of co-and counter-rotating bicircular pulses.Simulations show that the field amplitude and the wavelength are two significant factors for magnetic field generation by tricircular pulses.Specifically,the strength of the magnetic field is linearly related to the field amplitude atλ_(0)=50 nm,while atλ_(0)=70 nm,the strength first increases and then decreases with the amplitude,this can be attributed to the resonance between the ground and excited states.Moreover,the phase and helicity of bicircular pulses are shown to have important effects on the magnetic field.The dependence of the magnetic field on the phase arises from the interference effect between multiple ionization pathways.These findings illustrate a guiding principle for controlling the magnetic field in molecular systems for future research in ultrafast magneto-optics.展开更多
A wide-spectrum pulsed magnetic field(WSPMF)was obtained by adjusting the number of current pulses and the pulse interval between adjacent pulses.The effect of WSPMF on the grain refinement of pure aluminium was studi...A wide-spectrum pulsed magnetic field(WSPMF)was obtained by adjusting the number of current pulses and the pulse interval between adjacent pulses.The effect of WSPMF on the grain refinement of pure aluminium was studied.The distribution of electromagnetic force and flow field in the melt under the WSPMF was simulated to reveal the grain refining mechanism.Results show that the grain refinement is attributed to the combined effect of the melt flow and oscillation under a WSPMF.When the pulse interval is 5 ms,the extreme value of electromagnetic force is the highest,and the size of the crystal nucleus is 0.35 mm.In the case of similar flow rates,the grain size gradually decreases as the pulse interval increases.The range of the harmonic frequency of the magnetic field gradually expands with the increase of the pulse interval,which can provide more energy for nucleation at the solid-liquid interface and promote nucleation.展开更多
As a novel electric demulsification method,bidirectional pulsed electric field(BPEF)was employed to demulsify the surfactant stabilized oil-in-water(SSO/W)emulsion for oil/water separation in this work.The demulsifica...As a novel electric demulsification method,bidirectional pulsed electric field(BPEF)was employed to demulsify the surfactant stabilized oil-in-water(SSO/W)emulsion for oil/water separation in this work.The demulsification behavior,characteristics,and stages under BPEF were explored.It was discovered that BPEF drove SSO/W emulsion to move and form vortexes,during which the oil droplets aggregated and accumulated to generate an oil droplet layer(ODL).ODL subsequently transformed into a continuous oil layer(COL)leading to the demulsification and separation of SSO/W emulsion.The conversion rate of ODL to COL was defined and used to evaluate the demulsification process and reflect the coalescence ability and transformation efficiency of dispersed oil droplets into COL.Furthermore,the effects of BPEF voltage,frequency,duty cycle,ratio of pulse output time,and surfactant type and content on the demulsification performance were examined.The optimal values of BPEF parameters for demulsification operation were 400 V,25 Hz,50%,and 4:1.O/W emulsion containing anionic surfactant was apt to be demulsified by BPEF,nonionic surfactant took the second place and cationic surfactant was the most difficult.A high surfactant content was not conducive to the BPEF demulsification.This work is anticipated to provide useful guidance for oil/water separation and oil recovery from actual emulsified oily wastewater by BPEF.展开更多
The intrinsic chirp of high-order harmonic generation is an important factor limiting the production of ultrashort attosecond pulses.Based on numerically solving the time-dependent Schrodinger equation,the generation ...The intrinsic chirp of high-order harmonic generation is an important factor limiting the production of ultrashort attosecond pulses.Based on numerically solving the time-dependent Schrodinger equation,the generation process of highorder harmonic from the He atom under the action of orthogonal two-color combined pulse of fundamental frequency and higher intensity second harmonic fields is studied.In this paper,we propose to achieve quasi-chirp-free isolated attosecond pulses by superimposing a higher second-harmonic field on the orthogonal direction of the fundamental frequency field.It is found that the high-energy part of its harmonic emission exhibits small chirp characteristics,which can be used to synthesize isolated attosecond pulses.Through the analysis of the wave packets evolution and the classical motion trajectories of the electron,it is demonstrated that the quasi-chirp-free harmonic can be attributed to the simultaneous return of electrons ionized at different times to the parent particle.The influence of the relative phase of the two pulses on the harmonics is further analyzed,and it is observed that this phenomenon is sensitive to the relative phase,but it can still generate isolated attosecond pulses within a certain phase.展开更多
Herein,we discuss the modeling of the pulsed electric field(PEF)process,with attention focused on the originally intended application of pasteurization of liquid foods.We review literature on three classes of models.F...Herein,we discuss the modeling of the pulsed electric field(PEF)process,with attention focused on the originally intended application of pasteurization of liquid foods.We review literature on three classes of models.First are the models for electroporation(of molecular scale),derived from physics and physical chemistry considerations,and their extension to probabilistic approaches which treat pore formation as a random process.We discuss the more recent approaches involving molecular dynamics.Then,we consider treatment-chamber and system scale models,which are based on continuum physics approaches,and rely on computational Multiphysics codes for their solution.We then discuss the base assumptions for several modeling studies.Next,we consider models for inactivation kinetics for bacteria exposed to PEF,including the first order,Hulsheger,Peleg and Weibull models.We close with discussions of other models and experimental approaches for model verification and obtaining kinetic parameters from continuous flow PEF systems.展开更多
基金Supported by the National Natural Science Foundation,China,No.82272568,81902247,and 32201013Natural Science Foundation of Shandong Province,China,No.ZR2021QH275+1 种基金Natural Science Foundation of Jinan City,China,No.202225070Guangdong Basic and Applied Basic Research Foundation,China,No.2022A1515220056.
文摘BACKGROUND Mesenchymal stem cells(MSCs)modulated by various exogenous signals have been applied extensively in regenerative medicine research.Notably,nanosecond pulsed electric fields(nsPEFs),characterized by short duration and high strength,significantly influence cell phenotypes and regulate MSCs differentiation via multiple pathways.Consequently,we used transcriptomics to study changes in messenger RNA(mRNA),long noncoding RNA(lncRNA),microRNA(miRNA),and circular RNA expression during nsPEFs application.AIM To explore gene expression profiles and potential transcriptional regulatory mechanisms in MSCs pretreated with nsPEFs.METHODS The impact of nsPEFs on the MSCs transcriptome was investigated through whole transcriptome sequencing.MSCs were pretreated with 5-pulse nsPEFs(100 ns at 10 kV/cm,1 Hz),followed by total RNA isolation.Each transcript was normalized by fragments per kilobase per million.Fold change and difference significance were applied to screen the differentially expressed genes(DEGs).Gene Ontology and Kyoto Encyclopedia of Genes and Genomes analyses were performed to elucidate gene functions,complemented by quantitative polymerase chain reaction verification.RESULTS In total,263 DEGs were discovered,with 92 upregulated and 171 downregulated.DEGs were predominantly enriched in epithelial cell proliferation,osteoblast differentiation,mesenchymal cell differentiation,nuclear division,and wound healing.Regarding cellular components,DEGs are primarily involved in condensed chromosome,chromosomal region,actin cytoskeleton,and kinetochore.From aspect of molecular functions,DEGs are mainly involved in glycosaminoglycan binding,integrin binding,nuclear steroid receptor activity,cytoskeletal motor activity,and steroid binding.Quantitative real-time polymerase chain reaction confirmed targeted transcript regulation.CONCLUSION Our systematic investigation of the wide-ranging transcriptional pattern modulated by nsPEFs revealed the differential expression of 263 mRNAs,2 miRNAs,and 65 lncRNAs.Our study demonstrates that nsPEFs may affect stem cells through several signaling pathways,which are involved in vesicular transport,calcium ion transport,cytoskeleton,and cell differentiation.
文摘The Gibbs free energy is strongly related to the stability and catalytic function of an enzyme through the energetic changes that occur in the chemical reactions the enzyme catalyzes. In this in silico study, a pulsed electric field was applied to an azoreductase, and its effect on the Gibbs free energy of molecular docking with two dyes was measured. We propose that certain stimuli from a pulsed electric field favor the structural stability of the enzyme by promoting an arrangement in the active site, potentially leading to an enhancement of enzymatic activity overall.
文摘Background: ESBL-producing strains of Klebsiella pneumoniae, one of the main causes of nosocomial and hospital-acquired infections, are commonly associated with therapeutic impasses. Surveillance of these multidrug-resistant pathogens is a crucial tool for controlling and preventing infections. This surveillance involves the use of appropriate molecular and phenotypic typing techniques. The choice of techniques is based on criteria such as discriminatory power, intra- and inter-laboratory reproducibility, epidemiological concordance, ease of use and cost. The aim of our study was to identify clusters of Extended-Spectrum Beta-Lactamase-producing Klebsiella pneumoniae (ESBL-K. pneumoniae) strains circulating in neonatology using quantitative antibiogram (QA) and Pulsed Field Gel Electrophoresis (PFGE). Materials and Methods: This cross-sectional study included 55 K. pneumoniae strains isolated from a total of 513 samples. These various samples are taken from newborns, healthcare personnel, and the environment. K. pneumoniae identification followed standard bacteriological procedures and was confirmed using the Vitek® 2 (bioMérieux). The detection of the ESBL phenotype was performed using the synergy test. QA and PFGE were used to identify clonal relationships between the various strains isolated. Concordance between these two methods was assessed by calculating Cohen’s KAPPA coefficient and Simpson’s diversity index. Results: Among the 55 K. pneumoniae strains included in this study, 58.2% (32/55) were found to be Extended-Spectrum Beta-Lactamase (ESBL) producers. Most of these strains were isolated from neonatal samples (blood samples and rectal swabs). The quantitative antibiogram method applied to 28 out of the 32 ESBL-producing strains revealed that the isolates were grouped into 5 clusters. Pulsed Field Gel Electrophoresis performed on a total of 16 ESBL-producing strains showed the existence of four profiles. A perfect concordance was observed between the two methods. Conclusion: The results of this study highlighted the existence of clonal strains of various origins within neonatology units.
基金the National Natural Science Foundation of China(Grant No.12074146).
文摘We present a scheme to control the generated ultrafast magnetic field in H_(3)^(2+)molecules using multi-frequency tricircular pulses composed of co-and counter-rotating bicircular pulses.Simulations show that the field amplitude and the wavelength are two significant factors for magnetic field generation by tricircular pulses.Specifically,the strength of the magnetic field is linearly related to the field amplitude atλ_(0)=50 nm,while atλ_(0)=70 nm,the strength first increases and then decreases with the amplitude,this can be attributed to the resonance between the ground and excited states.Moreover,the phase and helicity of bicircular pulses are shown to have important effects on the magnetic field.The dependence of the magnetic field on the phase arises from the interference effect between multiple ionization pathways.These findings illustrate a guiding principle for controlling the magnetic field in molecular systems for future research in ultrafast magneto-optics.
基金financially supported by the National Natural Science Foundation of China(Grant Nos.52071194,U1760204)the National Key Research Program of China(Grant Nos.2020YFB2008401 and 2017YFB0701800)。
文摘A wide-spectrum pulsed magnetic field(WSPMF)was obtained by adjusting the number of current pulses and the pulse interval between adjacent pulses.The effect of WSPMF on the grain refinement of pure aluminium was studied.The distribution of electromagnetic force and flow field in the melt under the WSPMF was simulated to reveal the grain refining mechanism.Results show that the grain refinement is attributed to the combined effect of the melt flow and oscillation under a WSPMF.When the pulse interval is 5 ms,the extreme value of electromagnetic force is the highest,and the size of the crystal nucleus is 0.35 mm.In the case of similar flow rates,the grain size gradually decreases as the pulse interval increases.The range of the harmonic frequency of the magnetic field gradually expands with the increase of the pulse interval,which can provide more energy for nucleation at the solid-liquid interface and promote nucleation.
基金Scientific Platform Project of the Ministry of Education(fykf201907)the Postdoctoral Science Foundation Project of the Natural Science Foundation of Chongqing Municipality(cstc2021jcyjbshX0194)+3 种基金Science and Technology Research Program of Chongqing Municipal Education Commission(KJQN202100820 and KJZD-K201900804)Science and Technology Innovation Project of the Construction of the Chengdu-Chongqing Economic Circle of Chongqing Municipal Education Commission(KJCX2020036)Scientific Research Project of Chongqing Technology and Business University(2152016 and 2056006)Chongqing Technical Innovation and Application Project(cstc2019jscx-msxmX0275).
文摘As a novel electric demulsification method,bidirectional pulsed electric field(BPEF)was employed to demulsify the surfactant stabilized oil-in-water(SSO/W)emulsion for oil/water separation in this work.The demulsification behavior,characteristics,and stages under BPEF were explored.It was discovered that BPEF drove SSO/W emulsion to move and form vortexes,during which the oil droplets aggregated and accumulated to generate an oil droplet layer(ODL).ODL subsequently transformed into a continuous oil layer(COL)leading to the demulsification and separation of SSO/W emulsion.The conversion rate of ODL to COL was defined and used to evaluate the demulsification process and reflect the coalescence ability and transformation efficiency of dispersed oil droplets into COL.Furthermore,the effects of BPEF voltage,frequency,duty cycle,ratio of pulse output time,and surfactant type and content on the demulsification performance were examined.The optimal values of BPEF parameters for demulsification operation were 400 V,25 Hz,50%,and 4:1.O/W emulsion containing anionic surfactant was apt to be demulsified by BPEF,nonionic surfactant took the second place and cationic surfactant was the most difficult.A high surfactant content was not conducive to the BPEF demulsification.This work is anticipated to provide useful guidance for oil/water separation and oil recovery from actual emulsified oily wastewater by BPEF.
基金Project supported by the National Key Research and Development Program of China(Grant No.2019YFA0307700)the National Natural Science Foundation of China(Grant Nos.12074145,11627807,and 11975012)+2 种基金the Research Foundation for Basic Research of Jilin Province,China(Grant No.20220101003JC)the Fundamental Research Funds for the Central Universities of China(Grant No.30916011207)the Outstanding Youth Project of Taizhou University(Grant No.2019JQ002)。
文摘The intrinsic chirp of high-order harmonic generation is an important factor limiting the production of ultrashort attosecond pulses.Based on numerically solving the time-dependent Schrodinger equation,the generation process of highorder harmonic from the He atom under the action of orthogonal two-color combined pulse of fundamental frequency and higher intensity second harmonic fields is studied.In this paper,we propose to achieve quasi-chirp-free isolated attosecond pulses by superimposing a higher second-harmonic field on the orthogonal direction of the fundamental frequency field.It is found that the high-energy part of its harmonic emission exhibits small chirp characteristics,which can be used to synthesize isolated attosecond pulses.Through the analysis of the wave packets evolution and the classical motion trajectories of the electron,it is demonstrated that the quasi-chirp-free harmonic can be attributed to the simultaneous return of electrons ionized at different times to the parent particle.The influence of the relative phase of the two pulses on the harmonics is further analyzed,and it is observed that this phenomenon is sensitive to the relative phase,but it can still generate isolated attosecond pulses within a certain phase.
基金Financial and research support provided by the College of Food,Agricultural and Environmental Sciences,The Ohio State University,via USDA Multistate Research Project NC-1023Engineering for Food Safety and Quality.References to commercial products or trade names are made with the understanding that no endorsement or discrimination by The Ohio State University is implied。
文摘Herein,we discuss the modeling of the pulsed electric field(PEF)process,with attention focused on the originally intended application of pasteurization of liquid foods.We review literature on three classes of models.First are the models for electroporation(of molecular scale),derived from physics and physical chemistry considerations,and their extension to probabilistic approaches which treat pore formation as a random process.We discuss the more recent approaches involving molecular dynamics.Then,we consider treatment-chamber and system scale models,which are based on continuum physics approaches,and rely on computational Multiphysics codes for their solution.We then discuss the base assumptions for several modeling studies.Next,we consider models for inactivation kinetics for bacteria exposed to PEF,including the first order,Hulsheger,Peleg and Weibull models.We close with discussions of other models and experimental approaches for model verification and obtaining kinetic parameters from continuous flow PEF systems.