Electrochemical transformation emerges as an important solution to sustainable energy conversion and chemical production.Conventional electrolytic systems usually operate under galvanostatic or potentiostatic conditio...Electrochemical transformation emerges as an important solution to sustainable energy conversion and chemical production.Conventional electrolytic systems usually operate under galvanostatic or potentiostatic conditions that sometimes result in unsatisfactory efficiencies or selectivities.Pulse electrolysis by pulsating and programming the potentials/currents can feature unique tunability to the electrodeelectrolyte interface properties that can give rise to drastically different electrochemical behaviors compared to the steady-state counterparts.Although invented almost 100 years ago,pulse electrolysis has received little attention over the period,but has recently attracted a revived focus toward the energyefficient electrolysis.This review will summarize the history and recent efforts of pulse electrolysis in three categories:water electrolysis,CO_(2)electrolysis and other electrolysis.In each section,the advantage of pulse electrolysis over steady-state electrolysis will be discussed in detail,giving a comprehensive overview of the pulse effect on the electrolytic systems.Finally,we will provide our vision of future directions in pulse electrolysis based on previous works.展开更多
基金supports from the National Key R&D program of China(2019YFC1604602)supports from the National Key Basic Research Program of China(2019YFC1906700)the National Natural Science Foundation of China(21876049,51878643)。
文摘Electrochemical transformation emerges as an important solution to sustainable energy conversion and chemical production.Conventional electrolytic systems usually operate under galvanostatic or potentiostatic conditions that sometimes result in unsatisfactory efficiencies or selectivities.Pulse electrolysis by pulsating and programming the potentials/currents can feature unique tunability to the electrodeelectrolyte interface properties that can give rise to drastically different electrochemical behaviors compared to the steady-state counterparts.Although invented almost 100 years ago,pulse electrolysis has received little attention over the period,but has recently attracted a revived focus toward the energyefficient electrolysis.This review will summarize the history and recent efforts of pulse electrolysis in three categories:water electrolysis,CO_(2)electrolysis and other electrolysis.In each section,the advantage of pulse electrolysis over steady-state electrolysis will be discussed in detail,giving a comprehensive overview of the pulse effect on the electrolytic systems.Finally,we will provide our vision of future directions in pulse electrolysis based on previous works.