Traditional chaotic pulse position modulation(CPPM)system has many drawbacks.It introduces delay into the feedback loop,which will lead to divergence of chaotic map easily.The wrong decision of data will cause error p...Traditional chaotic pulse position modulation(CPPM)system has many drawbacks.It introduces delay into the feedback loop,which will lead to divergence of chaotic map easily.The wrong decision of data will cause error propagation.Mismatch of parameters and synchronization error between the receiver and transmitter will arouse high bit error rate.To solve these problems,a demodulation algorithm of CPPM based on particle filtering is proposed.According to the mathematical model of the system,it tracks the real signal by online separation in demodulation.Simulation results show that the proposed method can track the true signal better than the traditional CPPM scheme.What's more,it has good synchronization robustness,reduced error propagation by wrong decision and low bit error rate.展开更多
A novel concept of collision avoidance single-photon light detection and ranging(LIDAR) for vehicles has been demonstrated, in which chaotic pulse position modulation is applied on the transmitted laser pulses for r...A novel concept of collision avoidance single-photon light detection and ranging(LIDAR) for vehicles has been demonstrated, in which chaotic pulse position modulation is applied on the transmitted laser pulses for robust anti-crosstalk purposes. Besides, single-photon detectors(SPD) and time correlated single photon counting techniques are adapted, to sense the ultra-low power used for the consideration of compact structure and eye safety. Parameters including pulse rate, discrimination threshold, and number of accumulated pulses have been thoroughly analyzed based on the detection requirements, resulting in specified receiver operating characteristics curves. Both simulation and indoor experiments were performed to verify the excellent anti-crosstalk capability of the presented collision avoidance LIDAR despite ultra-low transmitting power.展开更多
Ultrawide bandwidth (UWB) radio, a very promising technique carrying information in very short basic pulses, has properties that make it a viable candidate for short-range wireless communications. In this paper, sever...Ultrawide bandwidth (UWB) radio, a very promising technique carrying information in very short basic pulses, has properties that make it a viable candidate for short-range wireless communications. In this paper, several short-pulse waveforms based on Gaussian genetic monocycle as well as Gaussian pulse waveform, as candidates of basic UWB pulse waveforms, are firstly proposed and investigated. Their spectrum characteristics, bit transmission rate (BTR), and bit error rate (BER) performance in AWGN channel using time hopping spread spectrum (THSS) and pulse position modulation (PPM) are simulated and evaluated. The numerical results are compared and show that the basic pulse waveforms determine the spectrum characteristics of UWB signals and have much effect on the performance of UWB radio system. The performance of UWB radio system achieved by the proposed basic pulse waveforms is much better than that of UWB radio system realized by other used basic pulse waveforms under the uniform conditions. Also, the polarity of these short basic pulses does not affect the performance of UWB radio system.展开更多
This study investigated the treatment of textile-dyeing wastewater by using an electrical discharge technique (positive pulsed corona discharge). The high-voltage electrode was placed above the surface Of the wastew...This study investigated the treatment of textile-dyeing wastewater by using an electrical discharge technique (positive pulsed corona discharge). The high-voltage electrode was placed above the surface Of the wastewater while the ground electrode was submerged in the wastewater. The electrical discharge starting at the tip of the high voltage electrode propagated toward the surface of the wastewater, producing various oxidative radicals and ozone. Oxygen was used as the working gas instead of air to prevent nitrogen oxides from forming. The simulated wastewater was made up with amaranth, which is a kind of azo dye. The results obtained showed that the chromaticity of the wastewater was almost completely removed within an hour. The ultraviolet/visible spectra of the wastewater treated by the electrical discharge revealed that the total hydrocarbon level also decreased significantly.展开更多
The emission spectra of excited radicals(OH(A^2E),O(3p^3 P),Hα(3P)) and emissive species(N2^+(B^2∑u^+),N2(C3Πu)) produced by positive pulsed high-voltage needle-plane corona discharges in atmospheri...The emission spectra of excited radicals(OH(A^2E),O(3p^3 P),Hα(3P)) and emissive species(N2^+(B^2∑u^+),N2(C3Πu)) produced by positive pulsed high-voltage needle-plane corona discharges in atmospheric N2 and O2 flows wetted with 10%H2O at 80 ℃ are used to investigate the relative concentrations of the produced radicals.The results indicate that the tendencies of the concentrations of radicals with discharge conditions are similar to each other due to their similar excitation processes by electron collision.The influence of oxygen flow mixed with the nitrogen flow on the emission intensities of O(3p^5P → 3s^5S2^0.),Hα(3P → 2S),N2+(B^2∑u^+ → X^2∑g+0-0),and N2(C^3Πu → B^3Πg 1-0) is presented.When the flow rate of oxygen addition is varied from 0-30 ml min^-1,the emission intensities of O(3p^5P → 3s^5S2^0.),Hα(3P → 2s),and N2^+(B^2∑u^+ →X^2∑g 0-0) increase and reach a maximum.Then,if the oxygen flow rate increases further,the emission intensities tend to decrease.However,the intensity of N2(C^3Πu → B^3Πg1-0) decreases monotonously with the increasing oxygen flow,which indicates that the electron density decreases with the increasing oxygen flow.By the tendencies of the relative intensities to N2(C^3Πu → B^3Πg 1-0),the concentrations of the total produced O,H,and N2^+ are shown to increase with the oxygen flow.Based on the reactions for the production of H and O without and with the addition of O2,the analytic solutions for H and O production are derived in accordance with the experimental results.展开更多
The propagation of an intense laser pulse in an under-dense plasma induces a plasma wake that is suitable for the acceleration of electrons to relativistic energies. For an ultra-intense laser pulse which has a longit...The propagation of an intense laser pulse in an under-dense plasma induces a plasma wake that is suitable for the acceleration of electrons to relativistic energies. For an ultra-intense laser pulse which has a longitudinal size shorter than the plasma wavelength, λp, instead of a periodic plasma wave, a cavity free from cold plasma electrons, called a bubble, is formed behind the laser pulse. An intense charge separation electric field inside the moving bubble can capture the electrons at the base of the bubble and accelerate them with a narrow energy spread. In the nonlinear bubble regime, due to localized depletion at the front of the pulse during its propagation through the plasma, the phase shift between carrier waves and pulse envelope plays an important role in plasma response. The carrier–envelope phase(CEP) breaks down the symmetric transverse ponderomotive force of the laser pulse that makes the bubble structure unstable. Our studies using a series of two-dimensional(2D) particle-in-cell(PIC) simulations show that the frequency-chirped laser pulses are more effective in controlling the pulse depletion rate and consequently the effect of the CEP in the bubble regime. The results indicate that the utilization of a positively chirped laser pulse leads to an increase in rate of erosion of the leading edge of the pulse that rapidly results in the formation of a steep intensity gradient at the front of the pulse. A more unstable bubble structure, the self-injections in different positions, and high dark current are the results of using a positively chirped laser pulse. For a negatively chirped laser pulse, the pulse depletion process is compensated during the propagation of the pulse in plasma in such a way that results in a more stable bubble shape and therefore, a localized electron bunch is produced during the acceleration process. As a result, by the proper choice of chirping, one can tune the number of self-injected electrons, the size of accelerated bunch and its energy spectrum to the values required for practical applications.展开更多
Since the poor performance of orthogonal binary Pulse Position Modulation (PPM) compared with binary Pulse Amplitude Modulation (PAM), this paper presents a new modulation scheme named Pulse Width Modulation (PWM) for...Since the poor performance of orthogonal binary Pulse Position Modulation (PPM) compared with binary Pulse Amplitude Modulation (PAM), this paper presents a new modulation scheme named Pulse Width Modulation (PWM) for Impulse Radio Ultra-WideBand (IR-UWB) communication systems. This modulation scheme uses pulses with equal amplitude and different widths to carry different information. The receiver employs differences between similarity coefficients among these pulses to distinguish different information. Both theoretical analysis and simulation results verify that this novel scheme has a Signal to Noise Ratio (SNR) gain of about 1.75 dB compared with or- thogonal binary PPM, and has an SNR loss of about 1.4 dB compared with binary PAM. Although both the theoretical analysis and simulations are based on time-hopping multiple access, this modulation scheme can also be applied to other accessing techniques of UWB communication systems.展开更多
Although Successive Interference Cancellation(SIC)decoding is widely adopted in Nonorthogonal Multiple Access(NOMA)schemes for the recovery of user data at acceptable complexity,the imperfect SIC would cause Error Pro...Although Successive Interference Cancellation(SIC)decoding is widely adopted in Nonorthogonal Multiple Access(NOMA)schemes for the recovery of user data at acceptable complexity,the imperfect SIC would cause Error Propagation(EP),which can severely degrade system performance.In this work,we propose an SIC-free NOMA scheme in pulse modulation based Visible Light Communication(VLC)downlinks,including two types of users with different data rate requirements.Low bit-rate users adopt on-off keying,whereas high bit-rate ones use Multiple Pulse Position Modulation(MPPM).The soft decision decoding scheme is exploited by high bit-rate users to decode MPPM signals,which could fundamentally eliminate the detrimental effect of EP;the scheme is also easier and faster to execute compared with the conventional SIC decoding scheme.Expressions of the symbol error rate and achievable data rate for two types of users are derived.Results of the Monte Carlo simulation are provided to confirm the correctness of theoretical results.展开更多
A location-adaptive transmission scheme for indoor visible light communication(VLC) system is proposed in this paper.In this scheme,the symbol error rate(SER) of less than 10-3 should be guaranteed.And the scheme is r...A location-adaptive transmission scheme for indoor visible light communication(VLC) system is proposed in this paper.In this scheme,the symbol error rate(SER) of less than 10-3 should be guaranteed.And the scheme is realized by the variable multilevel pulse-position modulation(MPPM),where the transmitters adaptively adjust the number of time slots n in the MPPM symbol according to the position of the receiver.The purpose of our scheme is to achieve the best data rate in the indoor different locations.The results show that the location-adaptive transmission scheme based on the variable MPPM is superior in the indoor VLC system.展开更多
A label swapping scheme of an optical labeled signal with differential phase shift keying (DPSK) for label at 2.5 Gb/s and pulse position modulation (PPM) for payload at 40 Gb/s is demonstrated by simulation. Powe...A label swapping scheme of an optical labeled signal with differential phase shift keying (DPSK) for label at 2.5 Gb/s and pulse position modulation (PPM) for payload at 40 Gb/s is demonstrated by simulation. Power penalties of -1.8 and -0.8 dB are achieved for both the payload and label over 80-kin single mode fiber (SMF) transmission. This labeling scheme allows the use of four-wave mixing (FWM) in semiconductor optical amplifier (SOA) to perform label erasure, with advantages of transparence for bit rate, high processing rate, simple architecture, and low cost. Label swapping is demonstrated with appropriate penalties of -3.5 and 0.8 dB for PPM payload and new DPSK label, respectively. To further prove the effectiveness of the proposed scheme, label swapping in the case of using 10-Gb/s DPSK label is also investigated with the nnwer penaltios af tq n.nd P dR fnr PPM paylnnrl and new dPRIC lnhol展开更多
In this paper, the problem of parameter estimation of the combined radar signal adopting chaotic pulse position modulation (CPPM) and linear frequency modulation (LFM), which can be widely used in electronic count...In this paper, the problem of parameter estimation of the combined radar signal adopting chaotic pulse position modulation (CPPM) and linear frequency modulation (LFM), which can be widely used in electronic countermeasures, is addressed. An approach is proposed to estimate the initial frequency and chirp rate of the combined signal by exploiting the second-order cyclostationarity of the intra-pulse signal. In addition, under the condition of the equal pulse width, the pulse repetition interval (PRI) of the combined signal is predicted using the low-order Volterra adaptive filter. Simulations demonstrate that the proposed cyclic autocorrelation Hough transform (CHT) algorithm is theoretically tolerant to additive white Gaussian noise. When the value of signal noise to ratio (SNR) is less than 4 dB, it can still estimate the intra-pulse parameters well. When SNR = 3 dB, a good prediction of the PRI sequence can be achieved by the Volterra adaptive filter algorithm, even only 100 training samples.展开更多
Considering the influence of more random atmospheric turbulence, worse pointing errors and highly dynamic link on the transmission performance of mobile multiple-input multiple-output (MIMO) free space optics (FSO...Considering the influence of more random atmospheric turbulence, worse pointing errors and highly dynamic link on the transmission performance of mobile multiple-input multiple-output (MIMO) free space optics (FSO) communica- tion systems, this paper establishes a channel model for the mobile platform. Based on the combination of Alamouti space-time code and time hopping ultra-wide band (TH-UWB) communications, a novel repetition space-time coding (RSTC) method for mobile 2x2 free-space optical communications with pulse position modulation (PPM) is devel- oped. In particular, two decoding methods of equal gain combining (EGC) maximum likelihood detection (MLD) and correlation matrix detection (CMD) are derived. When a quasi-static fading and weak turbulence channel model are considered, simulation results show that whether the channel state information (CSI) is known or not, the coding sys- tem demonstrates more significant performance of the symbol error rate (SER) than the uncoding. In other words, transmitting diversity can be achieved while conveying the information only through the time delays of the modulated signals transmitted from different antennas. CMD has almost the same effect of signal combining with maximal ratio combining (MRC). However, when the channel correlation increases, SER performance of the coding 2×2 system de- grades significantly.展开更多
基金Supported by the National Natural Science Foundation of China(No.41074090)Henan Science and Technology Key Project(No.092102210360)+1 种基金Henan Provincial Department of Education Science ang Technology Key Project(No.13A510330)Doctorate Program of Henan Polytechnic University(No.B2009-27)
文摘Traditional chaotic pulse position modulation(CPPM)system has many drawbacks.It introduces delay into the feedback loop,which will lead to divergence of chaotic map easily.The wrong decision of data will cause error propagation.Mismatch of parameters and synchronization error between the receiver and transmitter will arouse high bit error rate.To solve these problems,a demodulation algorithm of CPPM based on particle filtering is proposed.According to the mathematical model of the system,it tracks the real signal by online separation in demodulation.Simulation results show that the proposed method can track the true signal better than the traditional CPPM scheme.What's more,it has good synchronization robustness,reduced error propagation by wrong decision and low bit error rate.
基金Project supported by Tsinghua University Initiative Scientific Research Program,China(Grant No.2014z21035)
文摘A novel concept of collision avoidance single-photon light detection and ranging(LIDAR) for vehicles has been demonstrated, in which chaotic pulse position modulation is applied on the transmitted laser pulses for robust anti-crosstalk purposes. Besides, single-photon detectors(SPD) and time correlated single photon counting techniques are adapted, to sense the ultra-low power used for the consideration of compact structure and eye safety. Parameters including pulse rate, discrimination threshold, and number of accumulated pulses have been thoroughly analyzed based on the detection requirements, resulting in specified receiver operating characteristics curves. Both simulation and indoor experiments were performed to verify the excellent anti-crosstalk capability of the presented collision avoidance LIDAR despite ultra-low transmitting power.
文摘Ultrawide bandwidth (UWB) radio, a very promising technique carrying information in very short basic pulses, has properties that make it a viable candidate for short-range wireless communications. In this paper, several short-pulse waveforms based on Gaussian genetic monocycle as well as Gaussian pulse waveform, as candidates of basic UWB pulse waveforms, are firstly proposed and investigated. Their spectrum characteristics, bit transmission rate (BTR), and bit error rate (BER) performance in AWGN channel using time hopping spread spectrum (THSS) and pulse position modulation (PPM) are simulated and evaluated. The numerical results are compared and show that the basic pulse waveforms determine the spectrum characteristics of UWB signals and have much effect on the performance of UWB radio system. The performance of UWB radio system achieved by the proposed basic pulse waveforms is much better than that of UWB radio system realized by other used basic pulse waveforms under the uniform conditions. Also, the polarity of these short basic pulses does not affect the performance of UWB radio system.
文摘This study investigated the treatment of textile-dyeing wastewater by using an electrical discharge technique (positive pulsed corona discharge). The high-voltage electrode was placed above the surface Of the wastewater while the ground electrode was submerged in the wastewater. The electrical discharge starting at the tip of the high voltage electrode propagated toward the surface of the wastewater, producing various oxidative radicals and ozone. Oxygen was used as the working gas instead of air to prevent nitrogen oxides from forming. The simulated wastewater was made up with amaranth, which is a kind of azo dye. The results obtained showed that the chromaticity of the wastewater was almost completely removed within an hour. The ultraviolet/visible spectra of the wastewater treated by the electrical discharge revealed that the total hydrocarbon level also decreased significantly.
基金supported by National Natural Science Foundation of China under Grant No.513377014
文摘The emission spectra of excited radicals(OH(A^2E),O(3p^3 P),Hα(3P)) and emissive species(N2^+(B^2∑u^+),N2(C3Πu)) produced by positive pulsed high-voltage needle-plane corona discharges in atmospheric N2 and O2 flows wetted with 10%H2O at 80 ℃ are used to investigate the relative concentrations of the produced radicals.The results indicate that the tendencies of the concentrations of radicals with discharge conditions are similar to each other due to their similar excitation processes by electron collision.The influence of oxygen flow mixed with the nitrogen flow on the emission intensities of O(3p^5P → 3s^5S2^0.),Hα(3P → 2S),N2+(B^2∑u^+ → X^2∑g+0-0),and N2(C^3Πu → B^3Πg 1-0) is presented.When the flow rate of oxygen addition is varied from 0-30 ml min^-1,the emission intensities of O(3p^5P → 3s^5S2^0.),Hα(3P → 2s),and N2^+(B^2∑u^+ →X^2∑g 0-0) increase and reach a maximum.Then,if the oxygen flow rate increases further,the emission intensities tend to decrease.However,the intensity of N2(C^3Πu → B^3Πg1-0) decreases monotonously with the increasing oxygen flow,which indicates that the electron density decreases with the increasing oxygen flow.By the tendencies of the relative intensities to N2(C^3Πu → B^3Πg 1-0),the concentrations of the total produced O,H,and N2^+ are shown to increase with the oxygen flow.Based on the reactions for the production of H and O without and with the addition of O2,the analytic solutions for H and O production are derived in accordance with the experimental results.
文摘The propagation of an intense laser pulse in an under-dense plasma induces a plasma wake that is suitable for the acceleration of electrons to relativistic energies. For an ultra-intense laser pulse which has a longitudinal size shorter than the plasma wavelength, λp, instead of a periodic plasma wave, a cavity free from cold plasma electrons, called a bubble, is formed behind the laser pulse. An intense charge separation electric field inside the moving bubble can capture the electrons at the base of the bubble and accelerate them with a narrow energy spread. In the nonlinear bubble regime, due to localized depletion at the front of the pulse during its propagation through the plasma, the phase shift between carrier waves and pulse envelope plays an important role in plasma response. The carrier–envelope phase(CEP) breaks down the symmetric transverse ponderomotive force of the laser pulse that makes the bubble structure unstable. Our studies using a series of two-dimensional(2D) particle-in-cell(PIC) simulations show that the frequency-chirped laser pulses are more effective in controlling the pulse depletion rate and consequently the effect of the CEP in the bubble regime. The results indicate that the utilization of a positively chirped laser pulse leads to an increase in rate of erosion of the leading edge of the pulse that rapidly results in the formation of a steep intensity gradient at the front of the pulse. A more unstable bubble structure, the self-injections in different positions, and high dark current are the results of using a positively chirped laser pulse. For a negatively chirped laser pulse, the pulse depletion process is compensated during the propagation of the pulse in plasma in such a way that results in a more stable bubble shape and therefore, a localized electron bunch is produced during the acceleration process. As a result, by the proper choice of chirping, one can tune the number of self-injected electrons, the size of accelerated bunch and its energy spectrum to the values required for practical applications.
文摘Since the poor performance of orthogonal binary Pulse Position Modulation (PPM) compared with binary Pulse Amplitude Modulation (PAM), this paper presents a new modulation scheme named Pulse Width Modulation (PWM) for Impulse Radio Ultra-WideBand (IR-UWB) communication systems. This modulation scheme uses pulses with equal amplitude and different widths to carry different information. The receiver employs differences between similarity coefficients among these pulses to distinguish different information. Both theoretical analysis and simulation results verify that this novel scheme has a Signal to Noise Ratio (SNR) gain of about 1.75 dB compared with or- thogonal binary PPM, and has an SNR loss of about 1.4 dB compared with binary PAM. Although both the theoretical analysis and simulations are based on time-hopping multiple access, this modulation scheme can also be applied to other accessing techniques of UWB communication systems.
基金supported by the National Key Research and Development Program of China(No.2017YFB0403403)the Natural Science Foundation of Guangdong Province(No.2015A030312006).
文摘Although Successive Interference Cancellation(SIC)decoding is widely adopted in Nonorthogonal Multiple Access(NOMA)schemes for the recovery of user data at acceptable complexity,the imperfect SIC would cause Error Propagation(EP),which can severely degrade system performance.In this work,we propose an SIC-free NOMA scheme in pulse modulation based Visible Light Communication(VLC)downlinks,including two types of users with different data rate requirements.Low bit-rate users adopt on-off keying,whereas high bit-rate ones use Multiple Pulse Position Modulation(MPPM).The soft decision decoding scheme is exploited by high bit-rate users to decode MPPM signals,which could fundamentally eliminate the detrimental effect of EP;the scheme is also easier and faster to execute compared with the conventional SIC decoding scheme.Expressions of the symbol error rate and achievable data rate for two types of users are derived.Results of the Monte Carlo simulation are provided to confirm the correctness of theoretical results.
基金supported by the Jinlin Provincial Science&Tenchology Department of China(No.20130413052GH)
文摘A location-adaptive transmission scheme for indoor visible light communication(VLC) system is proposed in this paper.In this scheme,the symbol error rate(SER) of less than 10-3 should be guaranteed.And the scheme is realized by the variable multilevel pulse-position modulation(MPPM),where the transmitters adaptively adjust the number of time slots n in the MPPM symbol according to the position of the receiver.The purpose of our scheme is to achieve the best data rate in the indoor different locations.The results show that the location-adaptive transmission scheme based on the variable MPPM is superior in the indoor VLC system.
基金supported by the National Natural Science Foundation of China(Nos.60977002,60677004, and 61001061)the Specialized Research Fund for the Doctoral Program of Higher Education of China(Nos. 200800131002 and 20100005120014)the Fundamental Research Fund for the Central Universities(No. BUPT2009RC0313)
文摘A label swapping scheme of an optical labeled signal with differential phase shift keying (DPSK) for label at 2.5 Gb/s and pulse position modulation (PPM) for payload at 40 Gb/s is demonstrated by simulation. Power penalties of -1.8 and -0.8 dB are achieved for both the payload and label over 80-kin single mode fiber (SMF) transmission. This labeling scheme allows the use of four-wave mixing (FWM) in semiconductor optical amplifier (SOA) to perform label erasure, with advantages of transparence for bit rate, high processing rate, simple architecture, and low cost. Label swapping is demonstrated with appropriate penalties of -3.5 and 0.8 dB for PPM payload and new DPSK label, respectively. To further prove the effectiveness of the proposed scheme, label swapping in the case of using 10-Gb/s DPSK label is also investigated with the nnwer penaltios af tq n.nd P dR fnr PPM paylnnrl and new dPRIC lnhol
基金supported by the National Natural Science Foundation of China under Grant 61172116
文摘In this paper, the problem of parameter estimation of the combined radar signal adopting chaotic pulse position modulation (CPPM) and linear frequency modulation (LFM), which can be widely used in electronic countermeasures, is addressed. An approach is proposed to estimate the initial frequency and chirp rate of the combined signal by exploiting the second-order cyclostationarity of the intra-pulse signal. In addition, under the condition of the equal pulse width, the pulse repetition interval (PRI) of the combined signal is predicted using the low-order Volterra adaptive filter. Simulations demonstrate that the proposed cyclic autocorrelation Hough transform (CHT) algorithm is theoretically tolerant to additive white Gaussian noise. When the value of signal noise to ratio (SNR) is less than 4 dB, it can still estimate the intra-pulse parameters well. When SNR = 3 dB, a good prediction of the PRI sequence can be achieved by the Volterra adaptive filter algorithm, even only 100 training samples.
基金supported by the National Natural Science Foundation of China(No.61205106)
文摘Considering the influence of more random atmospheric turbulence, worse pointing errors and highly dynamic link on the transmission performance of mobile multiple-input multiple-output (MIMO) free space optics (FSO) communica- tion systems, this paper establishes a channel model for the mobile platform. Based on the combination of Alamouti space-time code and time hopping ultra-wide band (TH-UWB) communications, a novel repetition space-time coding (RSTC) method for mobile 2x2 free-space optical communications with pulse position modulation (PPM) is devel- oped. In particular, two decoding methods of equal gain combining (EGC) maximum likelihood detection (MLD) and correlation matrix detection (CMD) are derived. When a quasi-static fading and weak turbulence channel model are considered, simulation results show that whether the channel state information (CSI) is known or not, the coding sys- tem demonstrates more significant performance of the symbol error rate (SER) than the uncoding. In other words, transmitting diversity can be achieved while conveying the information only through the time delays of the modulated signals transmitted from different antennas. CMD has almost the same effect of signal combining with maximal ratio combining (MRC). However, when the channel correlation increases, SER performance of the coding 2×2 system de- grades significantly.