A modified DBSCAN algorithm is presented for deinterleaving of radar pulses in modern EW environments.A main characteristic of the proposed method is that using only time of arrival of pulses,the method can sort the p...A modified DBSCAN algorithm is presented for deinterleaving of radar pulses in modern EW environments.A main characteristic of the proposed method is that using only time of arrival of pulses,the method can sort the pulses efficiently.Other PDW information such as rise time,carrier frequency,pulse width,modulation on pulse,fall time and direction of arrival are not required.To identify the valid PRIs in a set of interleaved pulses,an innovative modification of the DBSCAN algorithm is introduced which is accurate and easy to implement.The proposed method determines valid PRIs more accurately and neglects the spurious ones more efficiently as compared to the classical histogram based algorithms such as SDIF.Furthermore,without specifying any input parameter,the proposed method can deinterleave radar pulses while up to 30%jitter is present in the associated PRI.The accuracy and efficiency of the proposed method are verified by computer simulations and real data results.Experimental simulations are based on different real and operational scenarios where the presence of missing and spurious pulses are also considered.So,the simulation results can be of practical significance.展开更多
Radar target probing and measurement are challenging tasks for Radio Frequency Simulation(RFS) with pulse radar signal. Due to the long-time duration of pulse radar signal and the limited space of anechoic chamber, ...Radar target probing and measurement are challenging tasks for Radio Frequency Simulation(RFS) with pulse radar signal. Due to the long-time duration of pulse radar signal and the limited space of anechoic chamber, the reflected signal returns before pulse radar signal is fully transmitted in RFS. As a consequence, the transmitted and reflected signals are coupled at the receiver. To handle this problem, the Interrupted Transmitting and Receiving(ITR) experiment system is constructed in this paper by dividing the pulse radar signal into sub-pulses. The target echo can be obtained by transmitting and receiving the sub-pulses intermittently. Furthermore, the principles of ITR are discussed and the target probing experiments are performed with the ITR system. It is demonstrated that the ITR system can overcome the coupling between the reflected and transmitted signals. Based on the target probing results, the performance of pulse radar target probing and measurement can be verified in RFS with the ITR system.展开更多
This paper considers the problem of target and jamming recognition for the pulse Doppler radar fuze(PDRF).To solve the problem,the matched filter outputs of the PDRF under the action of target and jamming are analyzed...This paper considers the problem of target and jamming recognition for the pulse Doppler radar fuze(PDRF).To solve the problem,the matched filter outputs of the PDRF under the action of target and jamming are analyzed.Then,the frequency entropy and peak-to-peak ratio are extracted from the matched filter output of the PDRF,and the time-frequency joint feature is constructed.Based on the time-frequency joint feature,the naive Bayesian classifier(NBC)with minimal risk is established for target and jamming recognition.To improve the adaptability of the proposed method in complex environments,an online update process that adaptively modifies the classifier in the duration of the work of the PDRF is proposed.The experiments show that the PDRF can maintain high recognition accuracy when the signal-to-noise ratio(SNR)decreases and the jamming-to-signal ratio(JSR)increases.Moreover,the applicable analysis shows that he ONBCMR method has low computational complexity and can fully meet the real-time requirements of PDRF.展开更多
A jamming suppression method based on polarization signal detection is proposed under common range and velocity cheating jammingfor pulse Doppler radar. On the basis of the separation of the target and the jamming, th...A jamming suppression method based on polarization signal detection is proposed under common range and velocity cheating jammingfor pulse Doppler radar. On the basis of the separation of the target and the jamming, the range and velocity track on the true target are realized. Firstly the signal processing model of the full polarization pulse Doppler radar is introduced. Secondly the method of correct target separation is discussed, which is the twice detections of energy and polarization state on the two dimension resolution cells of range and velocity of the radar echo. Finally the simulations are performed and the results prove the validity. What's more, multiple range and velocity cheating jamming can be suppressed at the same time if the target and the jamming are different in the polarization domain.展开更多
The main function of electronic support measure system is to detect threating signals in order to take countermeasures against them. To accomplish this objective, a process of associating each interleaved pulse with i...The main function of electronic support measure system is to detect threating signals in order to take countermeasures against them. To accomplish this objective, a process of associating each interleaved pulse with its emitter must be done. This process is termed sorting or de-interleaving. A novel point symmetry based radar sorting (PSBRS) algorithm is addressed. In order to deal with all kinds of radar signals, the symmetry measure distance is used to cluster pulses instead of the conventional Euclidean distance. The reference points of the symmetrical clusters are initialized by the alternative fuzzy c-means (AFCM) algorithm to ameliorate the effects of noise and the false sorting. Besides, the density filtering (DF) algorithm is proposed to discard the noise pulses or clutter. The performance of the algorithm is evaluated under the effects of noise and missing pulses. It has been observed that the PSBRS algorithm can cope with a large number of noise pulses and it is completely independent of missing pulses. Finally, PSBRS is compared with some benchmark algorithms, and the simulation results reveal the feasibility and efficiency of the algorithm.展开更多
This study concerns a Ka-band solid-state transmitter cloud radar, made in China, which can operate in three different work modes, with different pulse widths, and coherent and incoherent integration numbers, to meet ...This study concerns a Ka-band solid-state transmitter cloud radar, made in China, which can operate in three different work modes, with different pulse widths, and coherent and incoherent integration numbers, to meet the requirements for cloud remote sensing over the Tibetan Plateau. Specifically, the design of the three operational modes of the radar(i.e., boundary mode M1, cirrus mode M2, and precipitation mode M3) is introduced. Also, a cloud radar data merging algorithm for the three modes is proposed. Using one month's continuous measurements during summertime at Naqu on the Tibetan Plateau,we analyzed the consistency between the cloud radar measurements of the three modes. The number of occurrences of radar detections of hydrometeors and the percentage contributions of the different modes' data to the merged data were estimated.The performance of the merging algorithm was evaluated. The results indicated that the minimum detectable reflectivity for each mode was consistent with theoretical results. Merged data provided measurements with a minimum reflectivity of -35 dBZ at the height of 5 km, and obtained information above the height of 0.2 km. Measurements of radial velocity by the three operational modes agreed very well, and systematic errors in measurements of reflectivity were less than 2 dB. However,large discrepancies existed in the measurements of the linear depolarization ratio taken from the different operational modes.The percentage of radar detections of hydrometeors in mid- and high-level clouds increased by 60% through application of pulse compression techniques. In conclusion, the merged data are appropriate for cloud and precipitation studies over the Tibetan Plateau.展开更多
The first troposphere wind profiling radar in China has been in operation. The paper describes the radar parameters and characteristics with some experimental results presented.
Aiming at the problem of resource allocation for digital array radar( DAR),a dwell scheduling algorithm is proposed in this paper. Firstly,the integrated priority of different radar tasks is designed,which ensures t...Aiming at the problem of resource allocation for digital array radar( DAR),a dwell scheduling algorithm is proposed in this paper. Firstly,the integrated priority of different radar tasks is designed,which ensures that the imaging tasks are scheduled without affecting the search and tracking tasks; Then,the optimal scheduling model of radar resource is established according to the constraints of pulse interleaving; Finally,a heuristic algorithm is used to solve the problem and a sparse-aperture cognitive ISAR imaging method is used to achieve partial precision tracking target imaging. Simulation results demonstrate that the proposed algorithm can both improve the performance of the radar system,and generate satisfactory imaging results.展开更多
Stepped frequency radar is a well known scheme to generate high range resolution profile (HRRP) of targets. Through appropriate radar parameter design, the radar enables both unambiguous velocity measurement and hig...Stepped frequency radar is a well known scheme to generate high range resolution profile (HRRP) of targets. Through appropriate radar parameter design, the radar enables both unambiguous velocity measurement and high resolution ranging within a single dwell in a high pulse repetition frequency (HPRF) mode. This paper analyzes in detail the design principle of the HPRF stepped frequency radar system, the solution to its ambiguity issue, as well as its signal processing method. Both theoretical analysis and simulation results demonstrate that the proposed radar scheme can work independently to solve the problem of motion compensation, and is therefore highly applicable to many new types of radar.展开更多
In this paper, the problem of parameter estimation of the combined radar signal adopting chaotic pulse position modulation (CPPM) and linear frequency modulation (LFM), which can be widely used in electronic count...In this paper, the problem of parameter estimation of the combined radar signal adopting chaotic pulse position modulation (CPPM) and linear frequency modulation (LFM), which can be widely used in electronic countermeasures, is addressed. An approach is proposed to estimate the initial frequency and chirp rate of the combined signal by exploiting the second-order cyclostationarity of the intra-pulse signal. In addition, under the condition of the equal pulse width, the pulse repetition interval (PRI) of the combined signal is predicted using the low-order Volterra adaptive filter. Simulations demonstrate that the proposed cyclic autocorrelation Hough transform (CHT) algorithm is theoretically tolerant to additive white Gaussian noise. When the value of signal noise to ratio (SNR) is less than 4 dB, it can still estimate the intra-pulse parameters well. When SNR = 3 dB, a good prediction of the PRI sequence can be achieved by the Volterra adaptive filter algorithm, even only 100 training samples.展开更多
文摘A modified DBSCAN algorithm is presented for deinterleaving of radar pulses in modern EW environments.A main characteristic of the proposed method is that using only time of arrival of pulses,the method can sort the pulses efficiently.Other PDW information such as rise time,carrier frequency,pulse width,modulation on pulse,fall time and direction of arrival are not required.To identify the valid PRIs in a set of interleaved pulses,an innovative modification of the DBSCAN algorithm is introduced which is accurate and easy to implement.The proposed method determines valid PRIs more accurately and neglects the spurious ones more efficiently as compared to the classical histogram based algorithms such as SDIF.Furthermore,without specifying any input parameter,the proposed method can deinterleave radar pulses while up to 30%jitter is present in the associated PRI.The accuracy and efficiency of the proposed method are verified by computer simulations and real data results.Experimental simulations are based on different real and operational scenarios where the presence of missing and spurious pulses are also considered.So,the simulation results can be of practical significance.
基金supported in part by the National Natural Science Foundation of China(Nos.61101180,61401491 and 61490692)
文摘Radar target probing and measurement are challenging tasks for Radio Frequency Simulation(RFS) with pulse radar signal. Due to the long-time duration of pulse radar signal and the limited space of anechoic chamber, the reflected signal returns before pulse radar signal is fully transmitted in RFS. As a consequence, the transmitted and reflected signals are coupled at the receiver. To handle this problem, the Interrupted Transmitting and Receiving(ITR) experiment system is constructed in this paper by dividing the pulse radar signal into sub-pulses. The target echo can be obtained by transmitting and receiving the sub-pulses intermittently. Furthermore, the principles of ITR are discussed and the target probing experiments are performed with the ITR system. It is demonstrated that the ITR system can overcome the coupling between the reflected and transmitted signals. Based on the target probing results, the performance of pulse radar target probing and measurement can be verified in RFS with the ITR system.
基金supported by the National Natural Science Foundation of China(Grant No.61973037 and No.61673066).
文摘This paper considers the problem of target and jamming recognition for the pulse Doppler radar fuze(PDRF).To solve the problem,the matched filter outputs of the PDRF under the action of target and jamming are analyzed.Then,the frequency entropy and peak-to-peak ratio are extracted from the matched filter output of the PDRF,and the time-frequency joint feature is constructed.Based on the time-frequency joint feature,the naive Bayesian classifier(NBC)with minimal risk is established for target and jamming recognition.To improve the adaptability of the proposed method in complex environments,an online update process that adaptively modifies the classifier in the duration of the work of the PDRF is proposed.The experiments show that the PDRF can maintain high recognition accuracy when the signal-to-noise ratio(SNR)decreases and the jamming-to-signal ratio(JSR)increases.Moreover,the applicable analysis shows that he ONBCMR method has low computational complexity and can fully meet the real-time requirements of PDRF.
文摘A jamming suppression method based on polarization signal detection is proposed under common range and velocity cheating jammingfor pulse Doppler radar. On the basis of the separation of the target and the jamming, the range and velocity track on the true target are realized. Firstly the signal processing model of the full polarization pulse Doppler radar is introduced. Secondly the method of correct target separation is discussed, which is the twice detections of energy and polarization state on the two dimension resolution cells of range and velocity of the radar echo. Finally the simulations are performed and the results prove the validity. What's more, multiple range and velocity cheating jamming can be suppressed at the same time if the target and the jamming are different in the polarization domain.
基金supported by the National Natural Science Foundation of China(61172116)
文摘The main function of electronic support measure system is to detect threating signals in order to take countermeasures against them. To accomplish this objective, a process of associating each interleaved pulse with its emitter must be done. This process is termed sorting or de-interleaving. A novel point symmetry based radar sorting (PSBRS) algorithm is addressed. In order to deal with all kinds of radar signals, the symmetry measure distance is used to cluster pulses instead of the conventional Euclidean distance. The reference points of the symmetrical clusters are initialized by the alternative fuzzy c-means (AFCM) algorithm to ameliorate the effects of noise and the false sorting. Besides, the density filtering (DF) algorithm is proposed to discard the noise pulses or clutter. The performance of the algorithm is evaluated under the effects of noise and missing pulses. It has been observed that the PSBRS algorithm can cope with a large number of noise pulses and it is completely independent of missing pulses. Finally, PSBRS is compared with some benchmark algorithms, and the simulation results reveal the feasibility and efficiency of the algorithm.
基金funded by the National Sciences Foundation of China(Grant No.91337103)the China Meteorological Administration Special Public Welfare Research Fund(Grant No.GYHY201406001)
文摘This study concerns a Ka-band solid-state transmitter cloud radar, made in China, which can operate in three different work modes, with different pulse widths, and coherent and incoherent integration numbers, to meet the requirements for cloud remote sensing over the Tibetan Plateau. Specifically, the design of the three operational modes of the radar(i.e., boundary mode M1, cirrus mode M2, and precipitation mode M3) is introduced. Also, a cloud radar data merging algorithm for the three modes is proposed. Using one month's continuous measurements during summertime at Naqu on the Tibetan Plateau,we analyzed the consistency between the cloud radar measurements of the three modes. The number of occurrences of radar detections of hydrometeors and the percentage contributions of the different modes' data to the merged data were estimated.The performance of the merging algorithm was evaluated. The results indicated that the minimum detectable reflectivity for each mode was consistent with theoretical results. Merged data provided measurements with a minimum reflectivity of -35 dBZ at the height of 5 km, and obtained information above the height of 0.2 km. Measurements of radial velocity by the three operational modes agreed very well, and systematic errors in measurements of reflectivity were less than 2 dB. However,large discrepancies existed in the measurements of the linear depolarization ratio taken from the different operational modes.The percentage of radar detections of hydrometeors in mid- and high-level clouds increased by 60% through application of pulse compression techniques. In conclusion, the merged data are appropriate for cloud and precipitation studies over the Tibetan Plateau.
文摘The first troposphere wind profiling radar in China has been in operation. The paper describes the radar parameters and characteristics with some experimental results presented.
基金Supported by the National Natural Science Foundation of China(61471386)
文摘Aiming at the problem of resource allocation for digital array radar( DAR),a dwell scheduling algorithm is proposed in this paper. Firstly,the integrated priority of different radar tasks is designed,which ensures that the imaging tasks are scheduled without affecting the search and tracking tasks; Then,the optimal scheduling model of radar resource is established according to the constraints of pulse interleaving; Finally,a heuristic algorithm is used to solve the problem and a sparse-aperture cognitive ISAR imaging method is used to achieve partial precision tracking target imaging. Simulation results demonstrate that the proposed algorithm can both improve the performance of the radar system,and generate satisfactory imaging results.
基金Supported by the fund of National Defense Industry Innovative Team
文摘Stepped frequency radar is a well known scheme to generate high range resolution profile (HRRP) of targets. Through appropriate radar parameter design, the radar enables both unambiguous velocity measurement and high resolution ranging within a single dwell in a high pulse repetition frequency (HPRF) mode. This paper analyzes in detail the design principle of the HPRF stepped frequency radar system, the solution to its ambiguity issue, as well as its signal processing method. Both theoretical analysis and simulation results demonstrate that the proposed radar scheme can work independently to solve the problem of motion compensation, and is therefore highly applicable to many new types of radar.
基金supported by the National Natural Science Foundation of China under Grant 61172116
文摘In this paper, the problem of parameter estimation of the combined radar signal adopting chaotic pulse position modulation (CPPM) and linear frequency modulation (LFM), which can be widely used in electronic countermeasures, is addressed. An approach is proposed to estimate the initial frequency and chirp rate of the combined signal by exploiting the second-order cyclostationarity of the intra-pulse signal. In addition, under the condition of the equal pulse width, the pulse repetition interval (PRI) of the combined signal is predicted using the low-order Volterra adaptive filter. Simulations demonstrate that the proposed cyclic autocorrelation Hough transform (CHT) algorithm is theoretically tolerant to additive white Gaussian noise. When the value of signal noise to ratio (SNR) is less than 4 dB, it can still estimate the intra-pulse parameters well. When SNR = 3 dB, a good prediction of the PRI sequence can be achieved by the Volterra adaptive filter algorithm, even only 100 training samples.