To enhance the accuracy of 2πα and 2πβ particle surface emission rate measurements and address the identification issues of nuclides in conventional methods, this study introduces two artificial neural network(ANN...To enhance the accuracy of 2πα and 2πβ particle surface emission rate measurements and address the identification issues of nuclides in conventional methods, this study introduces two artificial neural network(ANN) algorithms: back-propagation(BP) and genetic algorithm-based back-propagation(GA-BP). These algorithms classify pulse signals from distinct α and β particles. Their discrimination efficacy is assessed by simulating standard pulse signals and those produced by contaminated sources, mixing α and β particles within the detector. This study initially showcases energy spectrum measurement outcomes, subsequently tests the ANNs on the measurement and validation datasets, and contrasts the pulse shape discrimination efficacy of both algorithms. Experimental findings reveal that the proportional counter's energy resolution is not ideal, thus rendering energy analysis insufficient for distinguishing between 2πα and 2πβ particles. The BP neural network realizes approximately 99% accuracy for 2πα particles and approximately 95% for 2πβ particles, thus surpassing the GA-BP's performance. Additionally, the results suggest enhancing β particle discrimination accuracy by increasing the digital acquisition card's threshold lower limit. This study offers an advanced solution for the 2πα and 2πβ surface emission rate measurement method, presenting superior adaptability and scalability over conventional techniques.展开更多
The neutron flux monitor (NFM), as a significant diagnostic system in the International Thermonuclear Experimental Reactor (ITER), will play an important role in the readings of a series of key parameters in the f...The neutron flux monitor (NFM), as a significant diagnostic system in the International Thermonuclear Experimental Reactor (ITER), will play an important role in the readings of a series of key parameters in the fusion reaction process. As the core of the main electronic system of the NFM, the neutron-gamma pulse shape discrimination (n-γ PSD) can distinguish the neutron pulse from the gamma pulse and other disturbing pulses according to the thresholds of the rising time and the amplitude pre-installed on the board, the double timing point CFD method is used to get the rising time of the pulse. The n-γ PSD can provide an accurate neutron count.展开更多
We propose and demonstrate a silicon-on-insulator (SOI) on-chip optical pulse shaper based on four-tap finite impulse response. Due to different width designs in phase region of each tap, the phase differences for a...We propose and demonstrate a silicon-on-insulator (SOI) on-chip optical pulse shaper based on four-tap finite impulse response. Due to different width designs in phase region of each tap, the phase differences for all taps are controlled by an external thermal source, resulting in an optical pulse shaper. We further demonstrate optical arbitrary waveform generation based on the optical pulse shaper assisted by an optical frequency comb injection. Four different optical waveforms are generated when setting the central wavelengths at 1533.78 nm and 1547.1 nm and setting the thermal source temperatures at 23 ℃ and 33 ℃, respectively. Our scheme has distinct advantages of compactness, capability for integrating with electronics since the integrated silicon waveguide is employed.展开更多
Integrated optical pulse shaper opens up possibilities for realizing the ultra high-speed and ultra wide-band linear signal processing with compact size and low power consumption. We propose a silicon monolithic integ...Integrated optical pulse shaper opens up possibilities for realizing the ultra high-speed and ultra wide-band linear signal processing with compact size and low power consumption. We propose a silicon monolithic integrated optical pulse shaper using optical gradient force, which is based on the eight-path finite impulse response. A cantilever structure is fabricated in one arm of the Mach–Zehnder interferometer(MZI) to act as an amplitude modulator. The phase shift feature of waveguide is analyzed with the optical pump power, and five typical waveforms are demonstrated with the manipulation of optical force. Unlike other pulse shaper schemes based on thermo–optic effect or electro–optic effect, our scheme is based on a new degree of freedom manipulation, i.e., optical force, so no microelectrodes are required on the silicon chip,which can reduce the complexity of fabrication. Besides, the chip structure is suitable for commercial silicon on an insulator(SOI) wafer, which has a top silicon layer of about 220 nm in thickness.展开更多
Pulse shaping is a powerful tool for mitigating implosion instabilities in direct-drive inertial confinement fusion(ICF).However,the high-dimensional and nonlinear nature of implosions makes the pulse optimization qui...Pulse shaping is a powerful tool for mitigating implosion instabilities in direct-drive inertial confinement fusion(ICF).However,the high-dimensional and nonlinear nature of implosions makes the pulse optimization quite challenging.In this research,we develop a machine-learning pulse shape designer to achieve high compression density and stable implosion.The facility-specific laser imprint pattern is considered in the optimization,which makes the pulse design more relevant.The designer is applied to the novel double-cone ignition scheme,and simulation shows that the optimized pulse increases the areal density expectation by 16%in one dimension,and the clean-fuel thickness by a factor of four in two dimensions.This pulse shape designer could be a useful tool for direct-drive ICF instability control.展开更多
Linear Alkyl Benzene (LAB) is a promising liquid scintillator solvent in neutrino experiments because it has many appealing properties. The timing properties of LAB-based liquid scintillator have been studied throug...Linear Alkyl Benzene (LAB) is a promising liquid scintillator solvent in neutrino experiments because it has many appealing properties. The timing properties of LAB-based liquid scintillator have been studied through ultraviolet and ionization excitation in this study. The decay time of LAB, PPO and bis-MSB is found to be 48.6 ns, 1.55 ns and 1.5 ns, respectively. A model can describe the absorption and re-emission process between PPO and bis-MSB perfectly. The energy transfer time between LAB and PPO with different concentrations can be obtained via another model. We also show that the LAB-based liquid scintillator has good (n, γ) and (α, γ) discrimination power.展开更多
The Na I:Tl scintillator is an innovative material for dual-gamma-ray and neutron detection with a low ^(6)Li concentration.To achieve real-time n/γ discrimination,a zero-crossing time comparison algorithm based on t...The Na I:Tl scintillator is an innovative material for dual-gamma-ray and neutron detection with a low ^(6)Li concentration.To achieve real-time n/γ discrimination,a zero-crossing time comparison algorithm based on trapezoidal pulse shaping was developed.The algorithm can operate efficiently at low sampling rates and was implemented on a single-probe portable digital n/γ discriminator based on a field-programmable gate array.The discriminator and Na I:Tl,^(6)Li detector were tested in a neutron-gamma mixed field produced by an ^(241)Am-Be neutron source to evaluate the performance of the algorithm.The figure of merits was measured as 2.88 at a sampling rate of 50 MHz,indicating that the discriminator with its embedded algorithm has a promising n/γ discrimination capability.Efficient discrimination at sampling rates of 40 and 25 MHz demonstrates that the capability of this method is not limited by low sampling rates.展开更多
In this study,the anti-noise performance of a pulse-coupled neural network(PCNN)was investigated in the neutron and gamma-ray(n-γ)discrimination field.The experiments were conducted in two groups.In the first group,r...In this study,the anti-noise performance of a pulse-coupled neural network(PCNN)was investigated in the neutron and gamma-ray(n-γ)discrimination field.The experiments were conducted in two groups.In the first group,radiation pulse signals were pre-processed using a Fourier filter to reduce the original noise in the signals,whereas in the second group,the original noise was left untouched to simulate an extremely high-noise scenario.For each part,artificial Gaussian noise with different intensity levels was added to the signals prior to the discrimination process.In the aforementioned conditions,the performance of the PCNN was evaluated and compared with five other commonly used methods of n-γdiscrimination:(1)zero crossing,(2)charge comparison,(3)vector projection,(4)falling edge percentage slope,and(5)frequency gradient analysis.The experimental results showed that the PCNN method significantly outperforms other methods with outstanding FoM-value at all noise levels.Furthermore,the fluctuations in FoM-value of PCNN were significantly better than those obtained via other methods at most noise levels and only slightly worse than those obtained via the charge comparison and zerocrossing methods under extreme noise conditions.Additionally,the changing patterns and fluctuations of the FoMvalue were evaluated under different noise conditions.Hence,based on the results,the parameter selection strategy of the PCNN was presented.In conclusion,the PCNN method is suitable for use in high-noise application scenarios for n-γdiscrimination because of its stability and remarkable discrimination performance.It does not rely on strict parameter settings and can realize satisfactory performance over a wide parameter range.展开更多
This paper describes the generation of shaped femtosecond multiple pulses by using the phase-only Dammann filters in 4f femtosecond shaper and gives the experimental result of femtosecond pulse characterization by the...This paper describes the generation of shaped femtosecond multiple pulses by using the phase-only Dammann filters in 4f femtosecond shaper and gives the experimental result of femtosecond pulse characterization by the frequency- resolved optical gating (FROG) technique. With the theoretical simulation, it concludes that the quality of the generated output array is relevant to the number of pixels and the spacing between the components.展开更多
In this study we experimentally reveal that the phase change mechanism can be selectively triggered by shaping femtosecond pulse trains based on electron dynamics control (EDC), including manipulation of excitations...In this study we experimentally reveal that the phase change mechanism can be selectively triggered by shaping femtosecond pulse trains based on electron dynamics control (EDC), including manipulation of excitations, ionizations, densities, and temperatures of electrons. By designing the pulse energy distribution to adjust the absorptions, excitations, ionizations, and recombinations of electrons, the dominant phase change mechanism experiences transition from nonthermal to thermal process. This phenomenon is observed in quadruple, triple, and double pulses per train ablation of fused silica separately. This opens up possibilities for controlling phase change mechanisms by EDC, which is of great significance in laser processing of dielectrics and fabrication of integrated nano- and micro-optical devices.展开更多
A train of three equally spaced femtosecond laser pulses is employed to control the photoionization/photodissociation processes of cyclopentanone. With the increase of pulse separation, a strong modulation of product ...A train of three equally spaced femtosecond laser pulses is employed to control the photoionization/photodissociation processes of cyclopentanone. With the increase of pulse separation, a strong modulation of product ion yield is observed. More than ten-fold changes of ion yield ratio between different products can be realized. The experimental observations further explain the compositions and formation pathways of peaks in the mass spectra. The controlling mechanisms are also discussed.展开更多
The up-conversion luminescence tuning of rare-earth ions is an important research topic for understanding luminescence mechanisms and promoting related applications. In this paper, we experimentally study the up-conve...The up-conversion luminescence tuning of rare-earth ions is an important research topic for understanding luminescence mechanisms and promoting related applications. In this paper, we experimentally study the up-conversion luminescence tuning of Er3+-doped ceramic glass excited by the unshaped, V-shaped and cosine-shaped femtosecond laser field with different laser powers. The results show that green and red up-conversion luminescence can be effectively tuned by varying the power or spectral phase of the femtosecond laser field. We further analyze the up-conversion luminescence tuning mechanism by considering different excitation processes, including single-photon absorption(SPA), two-photon absorption(TPA), excited state absorption(ESA), and energy transfer up-conversion(ETU). The relative weight of TPA in the whole excitation process can increase with the increase of the laser power, thereby enhancing the intensity ratio between green and red luminescence(I547/I656). However, the second ETU(ETU2) process can generate red luminescence and reduce the green and red luminescence intensity ratio I547/I656, while the third ESA(ESA3) process can produce green luminescence and enhance its control efficiency. Moreover, the up-conversion luminescence tuning mechanism is further validated by observing the up-conversion luminescence intensity, depending on the laser power and the down-conversion luminescence spectrum under the excitation of 400-nm femtosecond laser pulse. These studies can present a clear physical picture that enables us to understand the up-conversion luminescence tuning mechanism in rare-earth ions, and can also provide an opportunity to tune up-conversion luminescence to promote its related applications.展开更多
Femtosecond coherent anti-Stokes Raman scattering (CARS) suffers from poor selectivity between neighbouring Raman levels due to the large bandwidth of the femtosecond pulses. This paper provides a new method to real...Femtosecond coherent anti-Stokes Raman scattering (CARS) suffers from poor selectivity between neighbouring Raman levels due to the large bandwidth of the femtosecond pulses. This paper provides a new method to realize the selective excitation and suppression of femtosecond CARS by manipulating both the probe and pump (or Stokes) spectra. These theoretical results indicate that the CARS signals between neighbouring Raman levels are differentiated from their indistinguishable femtosecond CARS spectra by tailoring the probe spectrum, and then their selective excitation and suppression can be realized by supplementally manipulating the pump (or Stokes) spectrum with the π spectral phase step.展开更多
The angular distribution of CH3I is investigated experimentally using a single Fourier transform-limited laser pulse and a pulse train, where a 90-fs 800-nm linearly polarized laser field with a moderate intensity of ...The angular distribution of CH3I is investigated experimentally using a single Fourier transform-limited laser pulse and a pulse train, where a 90-fs 800-nm linearly polarized laser field with a moderate intensity of 2.8 × 10^13 W/cm2 is used. The dynamic alignment is demonstrated in a single pulse experiment. Moreover, a pulse train is used to optimize the molecular alignment, and the alignment degree is almost identical to that with the single pulse. The results are analysed by using chirped femtosecond laser pulses, and it demonstrates that the structure of pulse train rather than its effective duration is crucial to the molecular alignment.展开更多
To reduce the experimental uncertainty in the 235 U resonance energy region and improve the detection efficiency for neutron total cross section measurements compared with those obtained with the neutron total cross s...To reduce the experimental uncertainty in the 235 U resonance energy region and improve the detection efficiency for neutron total cross section measurements compared with those obtained with the neutron total cross section spectrometer(NTOX), a dedicated lithium-containing scintillation detector has been developed on the Back-n beam line at the China Spallation Neutron Source. The Fast Scintillator-based Neutron Total Cross Section(FAST) spectrometer has been designed based on a Cs2Li La Br6(CLLB) scintillator considering the γ-ray flash and neutron environment on the Back-n beam line. The response of the CLLB scintillator to neutrons and γ-rays was evaluated with different 6Li/7 Li abundance ratios using Geant4. The neutron-γdiscrimination performance of the CLLB has been simulated considering different scintillation parameters, physical designs,and light readout modes. A cubic 6Li-enriched( > 90%) CLLB scintillator, which has a thickness of 4-9 mm and side length of no less than 50 mm to cover the Φ 50 mm neutron beam at the spectrometer position, has been proposed coupling to a side readout SiPM array to construct the FAST spectrometer. The developed simulation techniques for neutron-γ discrimination performance could provide technical support for other neutron-induced reaction measurements on the Back-n beam line.展开更多
Artificial Neural Network (ANN) equalizers have been successfully applied to mitigate Inter symbolic Interference (ISI) due to distortions introduced by linear or nonlinear communication channels. The ANN architecture...Artificial Neural Network (ANN) equalizers have been successfully applied to mitigate Inter symbolic Interference (ISI) due to distortions introduced by linear or nonlinear communication channels. The ANN architecture is chosen according to the type of ISI produced by fixed, fast or slow fading channels. In this work, we propose a combination of two techniques in order to minimize ISI yield by fast fading channels, i.e., pulse shape filtering and ANN equalizer. Levenberg-Marquardt algorithm is used to update the synaptic weights of an ANN comprise only by two recurrent perceptrons. The proposed system outperformed more complex structures such as those based on Kalman filtering approach.展开更多
The characteristics of N-type accumulation-mode MOS (NMOS) varactors line periodically loaded with resonant tunneling diodes (RTDs) are used for soliton-like pulses generation and shaping. The problem of wide pulse br...The characteristics of N-type accumulation-mode MOS (NMOS) varactors line periodically loaded with resonant tunneling diodes (RTDs) are used for soliton-like pulses generation and shaping. The problem of wide pulse breaking up into multiple pulses rather than a single is solved. Applying perturbative analysis, we show that the dynamics of the nonlinear transmission line (NLTL) is reduced to expanded Korteweg-de Vries (KdV) equation. Moreover, numerical integration of nonlinear differential and difference equations that result from the mathematical analysis of the line is discussed. As results, NLTL can simultaneously sharpen both leading and trailing of pulse edges and one could obtain a rising and sharpening step pulse.展开更多
Bursts of GHz repetition rate pulses involve more ablation mechanisms than single femtosecond pulses.Efficient ablation by GHz laser pulses is a multi-step process,consisting of a first thermal incubation phase,follow...Bursts of GHz repetition rate pulses involve more ablation mechanisms than single femtosecond pulses.Efficient ablation by GHz laser pulses is a multi-step process,consisting of a first thermal incubation phase,followed by a highly efficient ablation phase.GHz ablation therefore combines thermal and non-thermal ablation mechanisms.With an optimal choice of the burst duration,the ablation efficiency can be highly enhanced.Long bursts,comprising tens of pulses to hundreds of pulses,are needed to take full advantage of the increase in ablation efficiency.展开更多
Ultrabroadband systems and ultrafast electronics require the generation,transmission,and processing of high-quality ultrashort pulses rang-ing from nanoseconds(ns)to picoseconds(ps),which include well-established and ...Ultrabroadband systems and ultrafast electronics require the generation,transmission,and processing of high-quality ultrashort pulses rang-ing from nanoseconds(ns)to picoseconds(ps),which include well-established and emerging applications of time-domain reflectometry,arbitrary wave-form generation,sampling oscilloscopes,frequency synthesis,through-wall radar imaging,indoor communication,radar surveillance,and medical radar detection.Impulse radar advancements in industrial,scientific,and medical(ISM)domains are,for example,driven by ns-scale-defined ultrawideband(UWB)technologies.Nevertheless,the generation of ultrashort ps-scale pulses is highly desired to achieve unprecedented performances in all these ap-plications and future systems.However,due to the variety and applicability of different pulse generation and compression techniques,the selection of optimum or appropriate pulse generators and compressors is difficult for practitioners and users.To this end,this article aims to provide a comprehen-sive overview of ultrashort ns and ps pulse generation and compression techniques.The proposed and developed pulse generators available in the litera-ture and on the market,which are characterized by their corresponding pros and cons,are also explored.The theoretical analysis of pulse generation us-ing a nonlinear transmission line(NLTL)presented in the literature is briefly explained as well.Additionally,a holistic overview of these pulse genera-tors from the perspective of applications is given to describe their utilization in practical systems.All of these techniques are well summarized and com-pared in terms of fundamental pulse parameters,and research gaps in specified areas are highlighted.A thorough discussion of previous research work on various topologies and techniques is presented,and potential future directions for technical advancement are examined.展开更多
The ultralow detection threshold,ultralow intrinsic background,and excellent energy resolution of ptype point-contact germanium detectors are important for rare-event searches,in particular for the detection of direct...The ultralow detection threshold,ultralow intrinsic background,and excellent energy resolution of ptype point-contact germanium detectors are important for rare-event searches,in particular for the detection of direct dark matter interactions,coherent elastic neutrino-nucleus scattering,and neutrinoless double beta decay.Anomalous bulk events with an extremely fast rise time are observed in the CDEX-1B detector.We report a method of extracting fast bulk events from bulk events using a pulse shape simulation and reconstructed source experiment signature.Calibration data and the distribution of X-rays generated by intrinsic radioactivity verified that the fast bulk experienced a single hit near the passivation layer.The performance of this germanium detector indicates that it is capable of single-hit bulk spatial resolution and thus provides a background removal technique.展开更多
文摘To enhance the accuracy of 2πα and 2πβ particle surface emission rate measurements and address the identification issues of nuclides in conventional methods, this study introduces two artificial neural network(ANN) algorithms: back-propagation(BP) and genetic algorithm-based back-propagation(GA-BP). These algorithms classify pulse signals from distinct α and β particles. Their discrimination efficacy is assessed by simulating standard pulse signals and those produced by contaminated sources, mixing α and β particles within the detector. This study initially showcases energy spectrum measurement outcomes, subsequently tests the ANNs on the measurement and validation datasets, and contrasts the pulse shape discrimination efficacy of both algorithms. Experimental findings reveal that the proportional counter's energy resolution is not ideal, thus rendering energy analysis insufficient for distinguishing between 2πα and 2πβ particles. The BP neural network realizes approximately 99% accuracy for 2πα particles and approximately 95% for 2πβ particles, thus surpassing the GA-BP's performance. Additionally, the results suggest enhancing β particle discrimination accuracy by increasing the digital acquisition card's threshold lower limit. This study offers an advanced solution for the 2πα and 2πβ surface emission rate measurement method, presenting superior adaptability and scalability over conventional techniques.
基金supported by State Key Laboratory of Particle Detection & Electronics and ITER Plan National Major Project of China (No.2008GB109000)
文摘The neutron flux monitor (NFM), as a significant diagnostic system in the International Thermonuclear Experimental Reactor (ITER), will play an important role in the readings of a series of key parameters in the fusion reaction process. As the core of the main electronic system of the NFM, the neutron-gamma pulse shape discrimination (n-γ PSD) can distinguish the neutron pulse from the gamma pulse and other disturbing pulses according to the thresholds of the rising time and the amplitude pre-installed on the board, the double timing point CFD method is used to get the rising time of the pulse. The n-γ PSD can provide an accurate neutron count.
基金supported by the National Basic Research Program of China(Grant No.2011CB301704)the Program for New Century Excellent Talents in Ministryof Education of China(Grant No.NCET-11-0168)+1 种基金the Foundation for the Author of National Excellent Doctoral Dissertation of China(Grant No.201139)the National Natural Science Foundation of China(Grant Nos.60901006 and 11174096)
文摘We propose and demonstrate a silicon-on-insulator (SOI) on-chip optical pulse shaper based on four-tap finite impulse response. Due to different width designs in phase region of each tap, the phase differences for all taps are controlled by an external thermal source, resulting in an optical pulse shaper. We further demonstrate optical arbitrary waveform generation based on the optical pulse shaper assisted by an optical frequency comb injection. Four different optical waveforms are generated when setting the central wavelengths at 1533.78 nm and 1547.1 nm and setting the thermal source temperatures at 23 ℃ and 33 ℃, respectively. Our scheme has distinct advantages of compactness, capability for integrating with electronics since the integrated silicon waveguide is employed.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.60901006 and 11174096)the National Basic Research Program of China(Grant No.2011CB301704)+1 种基金the Program for New Century Excellent Talents in Ministry of Education of China(Grant No.NCET-11-0168)the Foundation for the Author of National Excellent Doctoral Dissertation of China(Grant No.201139)
文摘Integrated optical pulse shaper opens up possibilities for realizing the ultra high-speed and ultra wide-band linear signal processing with compact size and low power consumption. We propose a silicon monolithic integrated optical pulse shaper using optical gradient force, which is based on the eight-path finite impulse response. A cantilever structure is fabricated in one arm of the Mach–Zehnder interferometer(MZI) to act as an amplitude modulator. The phase shift feature of waveguide is analyzed with the optical pump power, and five typical waveforms are demonstrated with the manipulation of optical force. Unlike other pulse shaper schemes based on thermo–optic effect or electro–optic effect, our scheme is based on a new degree of freedom manipulation, i.e., optical force, so no microelectrodes are required on the silicon chip,which can reduce the complexity of fabrication. Besides, the chip structure is suitable for commercial silicon on an insulator(SOI) wafer, which has a top silicon layer of about 220 nm in thickness.
基金supported by the Strategic Priority Research Program of the Chinese Academy of Sciences (No. XDA25010200)the Fundamental Research Funds for the Central Universities (No. WK2140000014)the DCI joint team
文摘Pulse shaping is a powerful tool for mitigating implosion instabilities in direct-drive inertial confinement fusion(ICF).However,the high-dimensional and nonlinear nature of implosions makes the pulse optimization quite challenging.In this research,we develop a machine-learning pulse shape designer to achieve high compression density and stable implosion.The facility-specific laser imprint pattern is considered in the optimization,which makes the pulse design more relevant.The designer is applied to the novel double-cone ignition scheme,and simulation shows that the optimized pulse increases the areal density expectation by 16%in one dimension,and the clean-fuel thickness by a factor of four in two dimensions.This pulse shape designer could be a useful tool for direct-drive ICF instability control.
基金Supported by National Natural Science Foundation of China (10890094, 11011120080)
文摘Linear Alkyl Benzene (LAB) is a promising liquid scintillator solvent in neutrino experiments because it has many appealing properties. The timing properties of LAB-based liquid scintillator have been studied through ultraviolet and ionization excitation in this study. The decay time of LAB, PPO and bis-MSB is found to be 48.6 ns, 1.55 ns and 1.5 ns, respectively. A model can describe the absorption and re-emission process between PPO and bis-MSB perfectly. The energy transfer time between LAB and PPO with different concentrations can be obtained via another model. We also show that the LAB-based liquid scintillator has good (n, γ) and (α, γ) discrimination power.
基金This work was supported by the National Natural Science Foundation of China(NSFC)(No.12075308).
文摘The Na I:Tl scintillator is an innovative material for dual-gamma-ray and neutron detection with a low ^(6)Li concentration.To achieve real-time n/γ discrimination,a zero-crossing time comparison algorithm based on trapezoidal pulse shaping was developed.The algorithm can operate efficiently at low sampling rates and was implemented on a single-probe portable digital n/γ discriminator based on a field-programmable gate array.The discriminator and Na I:Tl,^(6)Li detector were tested in a neutron-gamma mixed field produced by an ^(241)Am-Be neutron source to evaluate the performance of the algorithm.The figure of merits was measured as 2.88 at a sampling rate of 50 MHz,indicating that the discriminator with its embedded algorithm has a promising n/γ discrimination capability.Efficient discrimination at sampling rates of 40 and 25 MHz demonstrates that the capability of this method is not limited by low sampling rates.
基金supported by the National Natural Science Foundation of China(Nos.4210040255,U19A2086)the Sichuan Science and Technology Program(No.2021JDRC0108)。
文摘In this study,the anti-noise performance of a pulse-coupled neural network(PCNN)was investigated in the neutron and gamma-ray(n-γ)discrimination field.The experiments were conducted in two groups.In the first group,radiation pulse signals were pre-processed using a Fourier filter to reduce the original noise in the signals,whereas in the second group,the original noise was left untouched to simulate an extremely high-noise scenario.For each part,artificial Gaussian noise with different intensity levels was added to the signals prior to the discrimination process.In the aforementioned conditions,the performance of the PCNN was evaluated and compared with five other commonly used methods of n-γdiscrimination:(1)zero crossing,(2)charge comparison,(3)vector projection,(4)falling edge percentage slope,and(5)frequency gradient analysis.The experimental results showed that the PCNN method significantly outperforms other methods with outstanding FoM-value at all noise levels.Furthermore,the fluctuations in FoM-value of PCNN were significantly better than those obtained via other methods at most noise levels and only slightly worse than those obtained via the charge comparison and zerocrossing methods under extreme noise conditions.Additionally,the changing patterns and fluctuations of the FoMvalue were evaluated under different noise conditions.Hence,based on the results,the parameter selection strategy of the PCNN was presented.In conclusion,the PCNN method is suitable for use in high-noise application scenarios for n-γdiscrimination because of its stability and remarkable discrimination performance.It does not rely on strict parameter settings and can realize satisfactory performance over a wide parameter range.
文摘This paper describes the generation of shaped femtosecond multiple pulses by using the phase-only Dammann filters in 4f femtosecond shaper and gives the experimental result of femtosecond pulse characterization by the frequency- resolved optical gating (FROG) technique. With the theoretical simulation, it concludes that the quality of the generated output array is relevant to the number of pixels and the spacing between the components.
基金Project supported by the National Basic Research Program of China (Grant No. 2011CB013000)the National Natural Science Foundation of China (Grant Nos. 90923039 and 51025521)
文摘In this study we experimentally reveal that the phase change mechanism can be selectively triggered by shaping femtosecond pulse trains based on electron dynamics control (EDC), including manipulation of excitations, ionizations, densities, and temperatures of electrons. By designing the pulse energy distribution to adjust the absorptions, excitations, ionizations, and recombinations of electrons, the dominant phase change mechanism experiences transition from nonthermal to thermal process. This phenomenon is observed in quadruple, triple, and double pulses per train ablation of fused silica separately. This opens up possibilities for controlling phase change mechanisms by EDC, which is of great significance in laser processing of dielectrics and fabrication of integrated nano- and micro-optical devices.
基金Project supported by the National Basic Research Program of China (973 Program) (Grant No.2013CB922200)the National Natural Science Foundation of China,(Grant Nos.10774056 and 10974070)+1 种基金the Fundamental Research Funds for the Central Universities,China (Grant No.200903371)the Specialized Research Fund for the Doctoral Program of Higher Education,China (Grant No.20100061110045)
文摘A train of three equally spaced femtosecond laser pulses is employed to control the photoionization/photodissociation processes of cyclopentanone. With the increase of pulse separation, a strong modulation of product ion yield is observed. More than ten-fold changes of ion yield ratio between different products can be realized. The experimental observations further explain the compositions and formation pathways of peaks in the mass spectra. The controlling mechanisms are also discussed.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.51132004,11474096,11604199,U1704145,and 11747101)the Fund from the Science and Technology Commission of Shanghai Municipality,China(Grant No.14JC1401500)+1 种基金the Henan Provincial Natural Science Foundation,China(Grant No.182102210117)the Higher Educational Key Program of Henan Province of China(Gant Nos.17A140025 and 16A140030)
文摘The up-conversion luminescence tuning of rare-earth ions is an important research topic for understanding luminescence mechanisms and promoting related applications. In this paper, we experimentally study the up-conversion luminescence tuning of Er3+-doped ceramic glass excited by the unshaped, V-shaped and cosine-shaped femtosecond laser field with different laser powers. The results show that green and red up-conversion luminescence can be effectively tuned by varying the power or spectral phase of the femtosecond laser field. We further analyze the up-conversion luminescence tuning mechanism by considering different excitation processes, including single-photon absorption(SPA), two-photon absorption(TPA), excited state absorption(ESA), and energy transfer up-conversion(ETU). The relative weight of TPA in the whole excitation process can increase with the increase of the laser power, thereby enhancing the intensity ratio between green and red luminescence(I547/I656). However, the second ETU(ETU2) process can generate red luminescence and reduce the green and red luminescence intensity ratio I547/I656, while the third ESA(ESA3) process can produce green luminescence and enhance its control efficiency. Moreover, the up-conversion luminescence tuning mechanism is further validated by observing the up-conversion luminescence intensity, depending on the laser power and the down-conversion luminescence spectrum under the excitation of 400-nm femtosecond laser pulse. These studies can present a clear physical picture that enables us to understand the up-conversion luminescence tuning mechanism in rare-earth ions, and can also provide an opportunity to tune up-conversion luminescence to promote its related applications.
基金Project supported by Programme for Changjiang Scholars and Innovative Research Team in University(PCSIRT)Shanghai Leading Academic Discipline Project(Grant No.B408)+3 种基金National Key Project for Basic Research of China(Grant Nos.2006CB806006 and 2006CB921105)Ministry of Education of China(Grant No.30800)Shanghai Municipal Natural Science Foundation(Grant No.09ZR1409300)Shanghai Municipal Science and Technology Commission(Grant No.07DZ22025)
文摘Femtosecond coherent anti-Stokes Raman scattering (CARS) suffers from poor selectivity between neighbouring Raman levels due to the large bandwidth of the femtosecond pulses. This paper provides a new method to realize the selective excitation and suppression of femtosecond CARS by manipulating both the probe and pump (or Stokes) spectra. These theoretical results indicate that the CARS signals between neighbouring Raman levels are differentiated from their indistinguishable femtosecond CARS spectra by tailoring the probe spectrum, and then their selective excitation and suppression can be realized by supplementally manipulating the pump (or Stokes) spectrum with the π spectral phase step.
基金Project supported by the National Natural Science Foundation of China (Grant Nos. 10774056 and 10974070)the Fundamental Research Funds for the Central Universities, China (Grant No. 200903371)the Specialized Research Fund for the Doctoral Program of Higher Education, China (Grant No. 20100061110045)
文摘The angular distribution of CH3I is investigated experimentally using a single Fourier transform-limited laser pulse and a pulse train, where a 90-fs 800-nm linearly polarized laser field with a moderate intensity of 2.8 × 10^13 W/cm2 is used. The dynamic alignment is demonstrated in a single pulse experiment. Moreover, a pulse train is used to optimize the molecular alignment, and the alignment degree is almost identical to that with the single pulse. The results are analysed by using chirped femtosecond laser pulses, and it demonstrates that the structure of pulse train rather than its effective duration is crucial to the molecular alignment.
基金supported by the Key Laboratory of Nuclear Data Foundation(No.JCKY2022201C153)National Natural Science Foundation of China(No.11505216),Educational Commission of Hunan Province of China(No.19B488)Natural Science Foundation of Hunan Province of China(Nos.2021JJ40444 and 2020RC3054).
文摘To reduce the experimental uncertainty in the 235 U resonance energy region and improve the detection efficiency for neutron total cross section measurements compared with those obtained with the neutron total cross section spectrometer(NTOX), a dedicated lithium-containing scintillation detector has been developed on the Back-n beam line at the China Spallation Neutron Source. The Fast Scintillator-based Neutron Total Cross Section(FAST) spectrometer has been designed based on a Cs2Li La Br6(CLLB) scintillator considering the γ-ray flash and neutron environment on the Back-n beam line. The response of the CLLB scintillator to neutrons and γ-rays was evaluated with different 6Li/7 Li abundance ratios using Geant4. The neutron-γdiscrimination performance of the CLLB has been simulated considering different scintillation parameters, physical designs,and light readout modes. A cubic 6Li-enriched( > 90%) CLLB scintillator, which has a thickness of 4-9 mm and side length of no less than 50 mm to cover the Φ 50 mm neutron beam at the spectrometer position, has been proposed coupling to a side readout SiPM array to construct the FAST spectrometer. The developed simulation techniques for neutron-γ discrimination performance could provide technical support for other neutron-induced reaction measurements on the Back-n beam line.
文摘Artificial Neural Network (ANN) equalizers have been successfully applied to mitigate Inter symbolic Interference (ISI) due to distortions introduced by linear or nonlinear communication channels. The ANN architecture is chosen according to the type of ISI produced by fixed, fast or slow fading channels. In this work, we propose a combination of two techniques in order to minimize ISI yield by fast fading channels, i.e., pulse shape filtering and ANN equalizer. Levenberg-Marquardt algorithm is used to update the synaptic weights of an ANN comprise only by two recurrent perceptrons. The proposed system outperformed more complex structures such as those based on Kalman filtering approach.
文摘The characteristics of N-type accumulation-mode MOS (NMOS) varactors line periodically loaded with resonant tunneling diodes (RTDs) are used for soliton-like pulses generation and shaping. The problem of wide pulse breaking up into multiple pulses rather than a single is solved. Applying perturbative analysis, we show that the dynamics of the nonlinear transmission line (NLTL) is reduced to expanded Korteweg-de Vries (KdV) equation. Moreover, numerical integration of nonlinear differential and difference equations that result from the mathematical analysis of the line is discussed. As results, NLTL can simultaneously sharpen both leading and trailing of pulse edges and one could obtain a rising and sharpening step pulse.
文摘Bursts of GHz repetition rate pulses involve more ablation mechanisms than single femtosecond pulses.Efficient ablation by GHz laser pulses is a multi-step process,consisting of a first thermal incubation phase,followed by a highly efficient ablation phase.GHz ablation therefore combines thermal and non-thermal ablation mechanisms.With an optimal choice of the burst duration,the ablation efficiency can be highly enhanced.Long bursts,comprising tens of pulses to hundreds of pulses,are needed to take full advantage of the increase in ablation efficiency.
文摘Ultrabroadband systems and ultrafast electronics require the generation,transmission,and processing of high-quality ultrashort pulses rang-ing from nanoseconds(ns)to picoseconds(ps),which include well-established and emerging applications of time-domain reflectometry,arbitrary wave-form generation,sampling oscilloscopes,frequency synthesis,through-wall radar imaging,indoor communication,radar surveillance,and medical radar detection.Impulse radar advancements in industrial,scientific,and medical(ISM)domains are,for example,driven by ns-scale-defined ultrawideband(UWB)technologies.Nevertheless,the generation of ultrashort ps-scale pulses is highly desired to achieve unprecedented performances in all these ap-plications and future systems.However,due to the variety and applicability of different pulse generation and compression techniques,the selection of optimum or appropriate pulse generators and compressors is difficult for practitioners and users.To this end,this article aims to provide a comprehen-sive overview of ultrashort ns and ps pulse generation and compression techniques.The proposed and developed pulse generators available in the litera-ture and on the market,which are characterized by their corresponding pros and cons,are also explored.The theoretical analysis of pulse generation us-ing a nonlinear transmission line(NLTL)presented in the literature is briefly explained as well.Additionally,a holistic overview of these pulse genera-tors from the perspective of applications is given to describe their utilization in practical systems.All of these techniques are well summarized and com-pared in terms of fundamental pulse parameters,and research gaps in specified areas are highlighted.A thorough discussion of previous research work on various topologies and techniques is presented,and potential future directions for technical advancement are examined.
基金supported by the National Key Research and Development Program of China(No.2017YFA0402203)the National Natural Science Foundation of China(No.11975162)the SPARK project of the research and innovation program of Sichuan University(No.2018SCUH0051)。
文摘The ultralow detection threshold,ultralow intrinsic background,and excellent energy resolution of ptype point-contact germanium detectors are important for rare-event searches,in particular for the detection of direct dark matter interactions,coherent elastic neutrino-nucleus scattering,and neutrinoless double beta decay.Anomalous bulk events with an extremely fast rise time are observed in the CDEX-1B detector.We report a method of extracting fast bulk events from bulk events using a pulse shape simulation and reconstructed source experiment signature.Calibration data and the distribution of X-rays generated by intrinsic radioactivity verified that the fast bulk experienced a single hit near the passivation layer.The performance of this germanium detector indicates that it is capable of single-hit bulk spatial resolution and thus provides a background removal technique.