In this study,a pulsed,high voltage driven hollow-cathode electron beam sources through an optical trigger is designed with characteristics of simple structure,low cost,and easy triggering.To validate the new design,t...In this study,a pulsed,high voltage driven hollow-cathode electron beam sources through an optical trigger is designed with characteristics of simple structure,low cost,and easy triggering.To validate the new design,the characteristics of hollow-cathode discharge and electron beam characterization under pulsed high voltage drive are studied experimentally and discussed by discharge characteristics and analyses of waveform details,respectively.The validation experiments indicate that the pulsed high voltage supply significantly improves the frequency and stability of the discharge,which provides a new solution for the realization of a high-frequency,high-energy electron beam source.The peak current amplitude in the high-energy electron beam increases from 6.2 A to 79.6 A,which indicates the pulsed power mode significantly improves the electron beam performance.Besides,increasing the capacitance significantly affects the highcurrent,lower-energy electron beam more than the high-energy electron beam.展开更多
Background:The polyphenols extraction of Phyllanthus emblica is primarily carried out using organic solvents,and assisted by physical fields such as ultrasound and microwave for extraction.High voltage pulsed electric...Background:The polyphenols extraction of Phyllanthus emblica is primarily carried out using organic solvents,and assisted by physical fields such as ultrasound and microwave for extraction.High voltage pulsed electric field technology(PEF)is a non-thermal processing technology that has high efficiency and minimal damage to thermosensitive substances.PEF has been applied to plant extraction in many studies,however,the extraction of polyphenols from Phyllanthus emblica using the PEF has still not been reported;Objective:This study explores the optimal extraction process of polyphenols from Phyllanthus emblica using the PEF,and investigates its relaxation and anti-wrinkle based on anti-oxidation and anti-inflammatory experiment,in order to develop a Phyllanthus emblica extract with substantial efficacy;Materials and Methods:The method of Phyllanthus emblica extract using PEF is established,and compared with a traditional extraction method.The experimental conditions,such as electric field intensity(0.5–6.0 kV/cm),pulse times(20−120),extraction time(0–60 min)and material concentration(0.5%∼3%),are investigated and optimized using orthogonal experiments;Results:the polyphenols in the Phyllanthus emblica extract were highest at the electric field intensity of 5 kV/cm,120 pulses,extraction time of 30 min,and 2%material concentration.The PEFcontained more polyphenols than the conventional water extraction and ultrasound-assisted extraction.The Phyllanthus emblica extract had substantial antioxidant and anti-inflammatory effects,with a good clearance effect on DPPH(IC50 of 1.82%)and ABTS(IC50 of 1.80%)radicals.At the Phyllanthus emblica extract concentration of 1.25%,inflammatory factors(TNF-α)were reduced by 47.08%;and Conclusion:The PEF is a leading-edge and promising method for preparing Phyllanthus emblica extracts.展开更多
High voltage fracturing technology was widely used in the field of reservoir reconstruction due to its advantages of being clean, pollution-free, and high-efficiency. However, high-frequency circuit oscillation occurs...High voltage fracturing technology was widely used in the field of reservoir reconstruction due to its advantages of being clean, pollution-free, and high-efficiency. However, high-frequency circuit oscillation occurs during the underwater high voltage pulse discharge process, which brings security risks to the stability of the pulse fracturing system. In order to solve this problem, an underwater pulse power discharge system was established, the circuit oscillation generation conditions were analyzed and the circuit oscillation suppression method was proposed. Firstly, the system structure was introduced and the charging model of the energy storage capacitor was established by the state space average method. Next, the electrode high-voltage breakdown model was established through COMSOL software, the electrode breakdown process was analyzed according to the electron density distribution image, and the plasma channel impedance was estimated based on the conductivity simulation results. Then the underwater pulse power discharge process and the circuit oscillation generation condition were analyzed, and the circuit oscillation suppression strategy of using the thyristor to replace the gas spark switch was proposed. Finally, laboratory experiments were carried out to verify the precision of the theoretical model and the suppression effect of circuit oscillation. The experimental results show that the voltage variation of the energy storage capacitor, the impedance change of the pulse power discharge process, and the equivalent circuit in each discharge stage were consistent with the theoretical model. The proposed oscillation suppression strategy cannot only prevent the damage caused by circuit oscillation but also reduce the damping oscillation time by77.1%, which can greatly improve the stability of the system. This research has potential application value in the field of underwater pulse power discharge for reservoir reconstruction.展开更多
Numerical simulation of the electrical field distribution helps in-depth understanding of the mechanisms behind the responses and the benefits of the high voltage pulse comminution. The COMSOL Multiphysics package was...Numerical simulation of the electrical field distribution helps in-depth understanding of the mechanisms behind the responses and the benefits of the high voltage pulse comminution. The COMSOL Multiphysics package was used to numerically simulate the effect of ore compositions in this study. Regarding phosphate ore particles shape and composition, the effects of mineral composition, particle size, particle shape and electrodes distance were investigated on the electrical field intensity and distribution. The results show that the induced electrical field is significantly dependent on the electrical properties of minerals,the feed particle size and the location of conductive minerals in ores. The angle of material contact surface with the discharge electrode is also an important factor in the intensity of electrical field. Moreover,it is found that the specific liberation effect at the disintegration of phosphate ore by electrical pulses is due to the locality of the electrical field at the interface of mineral components of the phosphate ore aggregates with different permittivities. However, the intensity of the electrical field increases with sharpening the contact angle. Besides, the electrical discharge in the samples is converted to the electrohydraulic discharge across the surrounding water by changing the distance between the discharge electrode and sample surface.展开更多
High precise, high voltage pulse generator made up of high-power IGBT and pulse transformers controlled by a computer are described. A simple main circuit topology employed in this pulse generator can reduce the cost ...High precise, high voltage pulse generator made up of high-power IGBT and pulse transformers controlled by a computer are described. A simple main circuit topology employed in this pulse generator can reduce the cost meanwhile it still meets special requirements for pulsed electric fields (PEFs) in food process. The pulse generator utilizes a complex programmable logic device (CPLD) to generate trigger signals. Pulse-frequency, pulse-width and pulse-number are controlled via RS232 bus by a computer. The high voltage pulse generator well suits to the application for fluid food non-thermal effect in pulsed electric fields, for it can increase and decrease by the step length 1.展开更多
High voltage pulse natural organic matter (NOM) toxic by-products. Fulvic acid discharge plasma can remove and produce no production of solution was treated by high voltage pulse discharge plasma in this paper. It w...High voltage pulse natural organic matter (NOM) toxic by-products. Fulvic acid discharge plasma can remove and produce no production of solution was treated by high voltage pulse discharge plasma in this paper. It was shown that: for the reason of thermolysis and oxidation, the pH and Oxidation Reduction Potential (ORP) of solution decreased gradually with the increase of peak voltage and fulvic acid solution concentration, meanwhile the temperature and turbidity of solution increased gradually. Adding hydrochlorid acid in the treatment could amplify the effect of plasma. When the concentration of NOM as the surrogate parameter, Ultraviolet Absorbancy Degree (UV254) increased slowly by the effect of plasma, while the degradation of Total Organic Carbon (TOC) was first-order reaction. The removal rate of TOC increased from 22.6% to 33.4% by high voltage pulse electrical field of 35 kv, and from 25.6% to 36.7% with the addition of hydrochlorid acid. This paper may provide some basis for the scale-up design of water treatment process by high voltage pulse discharge plasma with other technologies.展开更多
Lower hybrid wave (LHW), electro cyclotron (EC) and neutral beam injection (NBI) etc. are the important methods of auxiliary heating. They would be devoted to the HL-2A tokamak step by step. In order to satisfy ...Lower hybrid wave (LHW), electro cyclotron (EC) and neutral beam injection (NBI) etc. are the important methods of auxiliary heating. They would be devoted to the HL-2A tokamak step by step. In order to satisfy the debug of each system and the need of the experiment, the system should be equipped with high voltage pulse power (HVPP) according to the requirement.展开更多
There are a few assistant heating objects included electron cyclotron resonate heating ( ECRH ). Two 500 kW gyrotrons introduced from Russia were operated to launch 1 MW energy. So two set of TZ-2 high voltage puls...There are a few assistant heating objects included electron cyclotron resonate heating ( ECRH ). Two 500 kW gyrotrons introduced from Russia were operated to launch 1 MW energy. So two set of TZ-2 high voltage pulse modulators are needed.展开更多
Organic pollutants could be degraded by using bubble discharge in water with gas aeration in the discharge reactor and more plasma can be generated in the discharge process. When pulsed high voltage was applied betwee...Organic pollutants could be degraded by using bubble discharge in water with gas aeration in the discharge reactor and more plasma can be generated in the discharge process. When pulsed high voltage was applied between electrodes with gas aerated into the reactor, it showed that bubbles were broken, which meant that breakdown took place. It could also be observed that the removal rate of phenol increased with increasing discharge voltage or pulse frequency, and with reducing initial phenol concentration or solution electric conductivity. It could remove more amount of phenol by oxygen aeration. With increasing oxygen flow rate, the removal rate increased. There was little difference with air or nitrogen aeration for phenol removal. The solution temperature after discharge increased to a great extent. However, this part of energy consumption did not contribute to the reaction, which led to a reduction in the energy utilization efficiency.展开更多
To get an optimized pulsed electrical plasma discharge reactor and to increase the energy utilization efficiency in the removal of pollutants, two hybrid plasma discharge reactors were designed and optimized. The reac...To get an optimized pulsed electrical plasma discharge reactor and to increase the energy utilization efficiency in the removal of pollutants, two hybrid plasma discharge reactors were designed and optimized. The reactors were compared via the discharge characteristics, energy transfer efficiency, the yields of the active species and the energy utilization in dye wastewater degradation. The results showed that under the same AC input power, the characteristics of the discharge waveform of the point-to-plate reactor were better. Under the same AC input power, the two reactors both had almost the same peak voltage of 22 kV. The peak current of the point-to-plate reactor was 146 A, while that of the wire-to-cylinder reactor was only 48.8 A. The peak powers of the point-to-plate reactor and the wire-to-cylinder reactor were 1.38 MW and 1.01 MW, respectively. The energy per pulse of the point-to-plate reactor was 0.2221 J, which was about 29.4% higher than that of the wire-to-cylinder reactor (0.1716 J). To remove 50% Acid Orange 7 (AO7), the energy utilizations of the point-to-plate reactor and the wire- to-cylinder reactor were 1.02×10^-9 mol/L and 0.61×10^-9 mol/L, respectively. In the point-to- plate reactor, the concentration of hydrogen peroxide in pure water was 3.6 mmol/L after 40 min of discharge, which was higher than that of the wire-to-cylinder reactor (2.5 mmol/L). The concentration of liquid phase ozone in the point-to-plate reactor (5.7×10^-2 mmol/L) was about 26.7% higher than that in the wire-to-cylinder reactor (4.5×10^-2 mmol/L). The analysis results of the variance showed that the type of reactor and reaction time had significant impacts on the yields of the hydrogen peroxide and ozone. The main degradation intermediates of AO7 identified by gas chromatography and mass spectrometry (GCMS) were acetic acid, maleic anhydride, p- benzoquinone, phenol, benzoic acid, phthalic anhydride, coumarin and 2-naphthol. Proposed degradation pathways were elucidated in light of the analyzed degradation products.展开更多
Advanced biophysical wound healing therapies can apply mechanical, electrical, or light energy to re-stimulate healing processes in chronic wounds. Despite the growing evidence of the clinical efficacy of these therap...Advanced biophysical wound healing therapies can apply mechanical, electrical, or light energy to re-stimulate healing processes in chronic wounds. Despite the growing evidence of the clinical efficacy of these therapies, the optimal treatment stimulation parameters remain unknown and there are no standard treatment protocols. We introduce a closed-loop control design as an experimental system to study the dose-response of wound healing therapy treatment within a prescribed multidimensional and multimodal stimulation parameter space. Systems engineering approaches are applied to the control problem for estimation of a transfer function and model equations derived for use in optimal model-based control. The experimental control system design consisted of simultaneous application of biophysical energies inputted into a wound system. A study design set up including the use of negative pressure wound therapy, electrical stimulation therapy, and photobiomodulation device systems was described. Treatment stimulation parameters were selected from experimental ranges used in the scientific literature. Classical control methods and model-based control were suggested for model selection and evaluation and design of the overall control system. An experimental design for multimodal biophysical wound healing therapy control system is introduced to establish the dose-response interactions for development of therapeutic applications and device design.展开更多
基金supported by National Natural Science Foundation of China(No.12102099)the National Key R&D Program of China(No.2021YFC2202700)the Outstanding Academic Leader Project of Shanghai(Youth)(No.23XD1421700),respectively。
文摘In this study,a pulsed,high voltage driven hollow-cathode electron beam sources through an optical trigger is designed with characteristics of simple structure,low cost,and easy triggering.To validate the new design,the characteristics of hollow-cathode discharge and electron beam characterization under pulsed high voltage drive are studied experimentally and discussed by discharge characteristics and analyses of waveform details,respectively.The validation experiments indicate that the pulsed high voltage supply significantly improves the frequency and stability of the discharge,which provides a new solution for the realization of a high-frequency,high-energy electron beam source.The peak current amplitude in the high-energy electron beam increases from 6.2 A to 79.6 A,which indicates the pulsed power mode significantly improves the electron beam performance.Besides,increasing the capacitance significantly affects the highcurrent,lower-energy electron beam more than the high-energy electron beam.
基金supported by the Key-Area Research and Development Program of Guangdong Province grant numbers 21202107201900003,21202107201900005.
文摘Background:The polyphenols extraction of Phyllanthus emblica is primarily carried out using organic solvents,and assisted by physical fields such as ultrasound and microwave for extraction.High voltage pulsed electric field technology(PEF)is a non-thermal processing technology that has high efficiency and minimal damage to thermosensitive substances.PEF has been applied to plant extraction in many studies,however,the extraction of polyphenols from Phyllanthus emblica using the PEF has still not been reported;Objective:This study explores the optimal extraction process of polyphenols from Phyllanthus emblica using the PEF,and investigates its relaxation and anti-wrinkle based on anti-oxidation and anti-inflammatory experiment,in order to develop a Phyllanthus emblica extract with substantial efficacy;Materials and Methods:The method of Phyllanthus emblica extract using PEF is established,and compared with a traditional extraction method.The experimental conditions,such as electric field intensity(0.5–6.0 kV/cm),pulse times(20−120),extraction time(0–60 min)and material concentration(0.5%∼3%),are investigated and optimized using orthogonal experiments;Results:the polyphenols in the Phyllanthus emblica extract were highest at the electric field intensity of 5 kV/cm,120 pulses,extraction time of 30 min,and 2%material concentration.The PEFcontained more polyphenols than the conventional water extraction and ultrasound-assisted extraction.The Phyllanthus emblica extract had substantial antioxidant and anti-inflammatory effects,with a good clearance effect on DPPH(IC50 of 1.82%)and ABTS(IC50 of 1.80%)radicals.At the Phyllanthus emblica extract concentration of 1.25%,inflammatory factors(TNF-α)were reduced by 47.08%;and Conclusion:The PEF is a leading-edge and promising method for preparing Phyllanthus emblica extracts.
基金financially supported by the National Science and Technology Major Project(No.2016ZX05034004)。
文摘High voltage fracturing technology was widely used in the field of reservoir reconstruction due to its advantages of being clean, pollution-free, and high-efficiency. However, high-frequency circuit oscillation occurs during the underwater high voltage pulse discharge process, which brings security risks to the stability of the pulse fracturing system. In order to solve this problem, an underwater pulse power discharge system was established, the circuit oscillation generation conditions were analyzed and the circuit oscillation suppression method was proposed. Firstly, the system structure was introduced and the charging model of the energy storage capacitor was established by the state space average method. Next, the electrode high-voltage breakdown model was established through COMSOL software, the electrode breakdown process was analyzed according to the electron density distribution image, and the plasma channel impedance was estimated based on the conductivity simulation results. Then the underwater pulse power discharge process and the circuit oscillation generation condition were analyzed, and the circuit oscillation suppression strategy of using the thyristor to replace the gas spark switch was proposed. Finally, laboratory experiments were carried out to verify the precision of the theoretical model and the suppression effect of circuit oscillation. The experimental results show that the voltage variation of the energy storage capacitor, the impedance change of the pulse power discharge process, and the equivalent circuit in each discharge stage were consistent with the theoretical model. The proposed oscillation suppression strategy cannot only prevent the damage caused by circuit oscillation but also reduce the damping oscillation time by77.1%, which can greatly improve the stability of the system. This research has potential application value in the field of underwater pulse power discharge for reservoir reconstruction.
文摘Numerical simulation of the electrical field distribution helps in-depth understanding of the mechanisms behind the responses and the benefits of the high voltage pulse comminution. The COMSOL Multiphysics package was used to numerically simulate the effect of ore compositions in this study. Regarding phosphate ore particles shape and composition, the effects of mineral composition, particle size, particle shape and electrodes distance were investigated on the electrical field intensity and distribution. The results show that the induced electrical field is significantly dependent on the electrical properties of minerals,the feed particle size and the location of conductive minerals in ores. The angle of material contact surface with the discharge electrode is also an important factor in the intensity of electrical field. Moreover,it is found that the specific liberation effect at the disintegration of phosphate ore by electrical pulses is due to the locality of the electrical field at the interface of mineral components of the phosphate ore aggregates with different permittivities. However, the intensity of the electrical field increases with sharpening the contact angle. Besides, the electrical discharge in the samples is converted to the electrohydraulic discharge across the surrounding water by changing the distance between the discharge electrode and sample surface.
文摘High precise, high voltage pulse generator made up of high-power IGBT and pulse transformers controlled by a computer are described. A simple main circuit topology employed in this pulse generator can reduce the cost meanwhile it still meets special requirements for pulsed electric fields (PEFs) in food process. The pulse generator utilizes a complex programmable logic device (CPLD) to generate trigger signals. Pulse-frequency, pulse-width and pulse-number are controlled via RS232 bus by a computer. The high voltage pulse generator well suits to the application for fluid food non-thermal effect in pulsed electric fields, for it can increase and decrease by the step length 1.
文摘High voltage pulse natural organic matter (NOM) toxic by-products. Fulvic acid discharge plasma can remove and produce no production of solution was treated by high voltage pulse discharge plasma in this paper. It was shown that: for the reason of thermolysis and oxidation, the pH and Oxidation Reduction Potential (ORP) of solution decreased gradually with the increase of peak voltage and fulvic acid solution concentration, meanwhile the temperature and turbidity of solution increased gradually. Adding hydrochlorid acid in the treatment could amplify the effect of plasma. When the concentration of NOM as the surrogate parameter, Ultraviolet Absorbancy Degree (UV254) increased slowly by the effect of plasma, while the degradation of Total Organic Carbon (TOC) was first-order reaction. The removal rate of TOC increased from 22.6% to 33.4% by high voltage pulse electrical field of 35 kv, and from 25.6% to 36.7% with the addition of hydrochlorid acid. This paper may provide some basis for the scale-up design of water treatment process by high voltage pulse discharge plasma with other technologies.
文摘Lower hybrid wave (LHW), electro cyclotron (EC) and neutral beam injection (NBI) etc. are the important methods of auxiliary heating. They would be devoted to the HL-2A tokamak step by step. In order to satisfy the debug of each system and the need of the experiment, the system should be equipped with high voltage pulse power (HVPP) according to the requirement.
文摘There are a few assistant heating objects included electron cyclotron resonate heating ( ECRH ). Two 500 kW gyrotrons introduced from Russia were operated to launch 1 MW energy. So two set of TZ-2 high voltage pulse modulators are needed.
基金supported by the Fundamental Research Funds for the Central Universities of China(HEUCFZ1124,HEUCFR1005)the Open Research Fund Program of State Key Laboratory of Water Resources and Hydropower Engineering Science of China(2010B077)
文摘Organic pollutants could be degraded by using bubble discharge in water with gas aeration in the discharge reactor and more plasma can be generated in the discharge process. When pulsed high voltage was applied between electrodes with gas aerated into the reactor, it showed that bubbles were broken, which meant that breakdown took place. It could also be observed that the removal rate of phenol increased with increasing discharge voltage or pulse frequency, and with reducing initial phenol concentration or solution electric conductivity. It could remove more amount of phenol by oxygen aeration. With increasing oxygen flow rate, the removal rate increased. There was little difference with air or nitrogen aeration for phenol removal. The solution temperature after discharge increased to a great extent. However, this part of energy consumption did not contribute to the reaction, which led to a reduction in the energy utilization efficiency.
基金supported by National Natural Science Foundation of China(Nos.21246010 and 20336030)Natural Science Foundation of Nantong University of China(No.03041134)
文摘To get an optimized pulsed electrical plasma discharge reactor and to increase the energy utilization efficiency in the removal of pollutants, two hybrid plasma discharge reactors were designed and optimized. The reactors were compared via the discharge characteristics, energy transfer efficiency, the yields of the active species and the energy utilization in dye wastewater degradation. The results showed that under the same AC input power, the characteristics of the discharge waveform of the point-to-plate reactor were better. Under the same AC input power, the two reactors both had almost the same peak voltage of 22 kV. The peak current of the point-to-plate reactor was 146 A, while that of the wire-to-cylinder reactor was only 48.8 A. The peak powers of the point-to-plate reactor and the wire-to-cylinder reactor were 1.38 MW and 1.01 MW, respectively. The energy per pulse of the point-to-plate reactor was 0.2221 J, which was about 29.4% higher than that of the wire-to-cylinder reactor (0.1716 J). To remove 50% Acid Orange 7 (AO7), the energy utilizations of the point-to-plate reactor and the wire- to-cylinder reactor were 1.02×10^-9 mol/L and 0.61×10^-9 mol/L, respectively. In the point-to- plate reactor, the concentration of hydrogen peroxide in pure water was 3.6 mmol/L after 40 min of discharge, which was higher than that of the wire-to-cylinder reactor (2.5 mmol/L). The concentration of liquid phase ozone in the point-to-plate reactor (5.7×10^-2 mmol/L) was about 26.7% higher than that in the wire-to-cylinder reactor (4.5×10^-2 mmol/L). The analysis results of the variance showed that the type of reactor and reaction time had significant impacts on the yields of the hydrogen peroxide and ozone. The main degradation intermediates of AO7 identified by gas chromatography and mass spectrometry (GCMS) were acetic acid, maleic anhydride, p- benzoquinone, phenol, benzoic acid, phthalic anhydride, coumarin and 2-naphthol. Proposed degradation pathways were elucidated in light of the analyzed degradation products.
文摘Advanced biophysical wound healing therapies can apply mechanical, electrical, or light energy to re-stimulate healing processes in chronic wounds. Despite the growing evidence of the clinical efficacy of these therapies, the optimal treatment stimulation parameters remain unknown and there are no standard treatment protocols. We introduce a closed-loop control design as an experimental system to study the dose-response of wound healing therapy treatment within a prescribed multidimensional and multimodal stimulation parameter space. Systems engineering approaches are applied to the control problem for estimation of a transfer function and model equations derived for use in optimal model-based control. The experimental control system design consisted of simultaneous application of biophysical energies inputted into a wound system. A study design set up including the use of negative pressure wound therapy, electrical stimulation therapy, and photobiomodulation device systems was described. Treatment stimulation parameters were selected from experimental ranges used in the scientific literature. Classical control methods and model-based control were suggested for model selection and evaluation and design of the overall control system. An experimental design for multimodal biophysical wound healing therapy control system is introduced to establish the dose-response interactions for development of therapeutic applications and device design.