Photocurrent-voltage characterization is a crucial method for assessing key parameters in x-ray or y-ray semiconductor detectors,especially the carrier mobility lifetime product.However,the high biases during photocur...Photocurrent-voltage characterization is a crucial method for assessing key parameters in x-ray or y-ray semiconductor detectors,especially the carrier mobility lifetime product.However,the high biases during photocurrent measurements tend to cause severe ion migration,which can lead to the instability and inaccuracy of the test results.Given the mixed electronic-ionic charac teristics,it is imperative to devise novel methods capable of precisely measuring photocurrentvoltage characteristics under high bias conditions,free from interference caused by ion migration.In this paper,pulsed bias is employed to explore the photocurrent-voltage characteristics of MAPbBr_(3) single crystals.The method yields stable photocurrent-voltage characteristics at a pulsed bias of up to 30 V,proving to be effective in mitigating ion migration.Through fitting the modified Hecht equation,we determined the mobility lifetime products of 1.0×10^(2) cm^(2)·V^(-1)for hole and 2.78×10~(-3)cm^(2)·V^(-1)for electron.This approach offers a promising solution for accurately measuring the transport properties of carriers in perovskite.展开更多
It has been reported that application of pulsed biases in arc ion plating could effectively eliminate droplet particles. The present paper aims at experimental verification of a physical model proposed previously by u...It has been reported that application of pulsed biases in arc ion plating could effectively eliminate droplet particles. The present paper aims at experimental verification of a physical model proposed previously by us which is based on particle charging and repulsion in the pulsed plasma sheath. An orthogonal experiment was designed for this purpose, using the electrical parameters of the pulsed bias for the deposition of TiN films on stainless steel substrates. The effect of these parameters on the amount and the size distribution of the particles were analyzed, and the results provided sufficient evidence for the physical model.展开更多
ZrN/TiZrN multilayers are deposited by using the cathodic vacuum arc method with different substrate bias(from 0 to 800 V),using Ti and Zr plasma flows in residual N 2 atmosphere,combined with ion bombardment of sam...ZrN/TiZrN multilayers are deposited by using the cathodic vacuum arc method with different substrate bias(from 0 to 800 V),using Ti and Zr plasma flows in residual N 2 atmosphere,combined with ion bombardment of sample surfaces.The effect of pulsed bias on the structure and properties of films is investigated.Microstructure of the coating is analyzed by X-ray diffraction(XRD),and scanning electron microscopy(SEM).In addition,nanohardness,Young's modulus,and scratch tests are performed.The experimental results show that the films exhibit a nanoscale multilayer structure consisting of TiZrN and ZrN phases.Solid solutions are formed for component TiZrN films.The dominant preferred orientation of TiZrN films is(111) and(220).At a pulsed bias of 200 V,the nanohardness and the adhesion strength of the ZrN/TiZrN multilayer reach a maximum of 38 GPa,and 78 N,respectively.The ZrN/TiZrN multilayer demonstrates an enhanced nanohardness compared with binary TiN and ZrN films deposited under equivalent conditions.展开更多
Ti-Al-N hard films have been prepared by cathodic arc deposition by using an unipolar pulsed bias.In the present study,Ti-Al-N films were deposited on stainless steel and silicon wafers.The deposition rate,micrograph,...Ti-Al-N hard films have been prepared by cathodic arc deposition by using an unipolar pulsed bias.In the present study,Ti-Al-N films were deposited on stainless steel and silicon wafers.The deposition rate,micrograph,preferred orientation and composition were systematically investigated by usingx-ray diffraction(XRD),energy dispersive X-ray spectroscopy(EDX), and a scanning electron microscope(SEM).It is shown that substate bias duty cycle and frequency have a great effect on film structure.A simple explanation for the results is also presented.展开更多
Arc deposition, a widely used surface coating technique, has disadvantages such as large droplet size and high deposition temperature. Recent trend in its renovation is the introduction of pulsed bias at the. substrat...Arc deposition, a widely used surface coating technique, has disadvantages such as large droplet size and high deposition temperature. Recent trend in its renovation is the introduction of pulsed bias at the. substrate. The present paper attempts to describe the deposition process of TiN films using this technique with emphasis laid on the understanding of the basic problems such as discharge plasma properties, temperature calculation, and droplet size reduction. We show that this technique improves the film micro structure and quality, lowers deposition temperature, and allows coatings on insulating substrates. After analyzing load current oscillation behaviors, we have determined that the plasma load is of capacitance nature due to plasma sheath and that it is equivalent to a circuit element consisting of parallel capacitance and resistance. At last, we point out the remaining problems and future development of the pulsed-bias arc deposition technique.展开更多
In this study, the role of the pulse duty ratio was investigated during the deposition of diamond films in a hot filament chemical vapour deposition reactor with a pulsed-tic biased substrate positively relative to th...In this study, the role of the pulse duty ratio was investigated during the deposition of diamond films in a hot filament chemical vapour deposition reactor with a pulsed-tic biased substrate positively relative to the hot filaments. The voltage-current characteristics showed that the discharge current rose with the increase of biasing voltage, which was modified by the duty ratio. Before deposition, two approaches were adopted for the pre-treatment of the silicon substrates, respectively, and the substrates were scratched by diamond paste or seeded by diamond powders using the so-called 'soft dry polished' technique. Diamond films were deposited under a fixed discharge power by changing the duty ratios. In the first group with scratched substrates, it was found that under a high duty ratio the diamond grew slowly with quite poor nucleation, while in the second case a high duty ratio induced a high deposition rate and good diamond qual- ity. Reactive hydrocarbon species with high energy are essential for the initial nucleation process, which is more effectively achieved at a high biasing voltage in the condition of a low duty ratio. In the film growth process, the large discharge current at a high duty ratio represents an increased concentration of electrons and reactive species as well, promoting the growth of diamond films.展开更多
Orthogonal experiments are used to design the pulsed bias related parameters, including bias magnitude, duty cycle and pulse frequency, during arc ion deposition of TiN films on stainless steel substrates in the case ...Orthogonal experiments are used to design the pulsed bias related parameters, including bias magnitude, duty cycle and pulse frequency, during arc ion deposition of TiN films on stainless steel substrates in the case of samples placing normal to the plasma flux. The effect of these parameters on the amount and the size distribution of droplet-particles are investigated, and the results have provided sufficient evidence for the physical model, in which particles reduction is due to the case that the particles are negatively charged and repulsed from negative pulse electric field. The effect of sample configuration on amount and size distribution of the particles are analyzed. The results of the amount and size distribution of the particles are compared to those in the case of samples placing parallel to the plasma flux.展开更多
Owing to the characteristics of arc ion plating(AIP) technique, the structure and composition of TiAlN films can be tailored by controlling of various parameters such as compositions of target materials, N2 partial pr...Owing to the characteristics of arc ion plating(AIP) technique, the structure and composition of TiAlN films can be tailored by controlling of various parameters such as compositions of target materials, N2 partial pressure, substrate bias and so on. In this study, several titanium aluminum nitride films were deposited on 1Cr11Ni2W2MoV steel for compressor blade of areo-engine under different d.c pulse bias voltage and nitrogen partial pressure. The effects of substrate pulse bias and nitrogen partial pressure on the deposition rate, droplet formation, microstruture and elemental component of the films were investigated.展开更多
44.6 fs pulses from a 257 MHz, mode-locked non-polarization maintaining Er-doped fiber laser based on a biased nonlinear amplifying loop mirror are reported. The output power is 104 mW and the single-pulse energy is 0...44.6 fs pulses from a 257 MHz, mode-locked non-polarization maintaining Er-doped fiber laser based on a biased nonlinear amplifying loop mirror are reported. The output power is 104 mW and the single-pulse energy is 0.4 nJ. The minimum pulse duration of the direct output is 44.6 fs, which is the shortest in this kind of laser.展开更多
基金Project supported by the National Natural Science Foundation of China (Grant No.62104234)Shanghai Explorer Program (Grant No.22TS1400100)。
文摘Photocurrent-voltage characterization is a crucial method for assessing key parameters in x-ray or y-ray semiconductor detectors,especially the carrier mobility lifetime product.However,the high biases during photocurrent measurements tend to cause severe ion migration,which can lead to the instability and inaccuracy of the test results.Given the mixed electronic-ionic charac teristics,it is imperative to devise novel methods capable of precisely measuring photocurrentvoltage characteristics under high bias conditions,free from interference caused by ion migration.In this paper,pulsed bias is employed to explore the photocurrent-voltage characteristics of MAPbBr_(3) single crystals.The method yields stable photocurrent-voltage characteristics at a pulsed bias of up to 30 V,proving to be effective in mitigating ion migration.Through fitting the modified Hecht equation,we determined the mobility lifetime products of 1.0×10^(2) cm^(2)·V^(-1)for hole and 2.78×10~(-3)cm^(2)·V^(-1)for electron.This approach offers a promising solution for accurately measuring the transport properties of carriers in perovskite.
基金This work was supported by the National Natural Science Foundation of China(No.50071017)the National High-Tech Program of China(No.2002A A302507).
文摘It has been reported that application of pulsed biases in arc ion plating could effectively eliminate droplet particles. The present paper aims at experimental verification of a physical model proposed previously by us which is based on particle charging and repulsion in the pulsed plasma sheath. An orthogonal experiment was designed for this purpose, using the electrical parameters of the pulsed bias for the deposition of TiN films on stainless steel substrates. The effect of these parameters on the amount and the size distribution of the particles were analyzed, and the results provided sufficient evidence for the physical model.
基金Project supported by the National Magnetic Confinement Fusion Science Program of China (Grant No. 2009GB106004)
文摘ZrN/TiZrN multilayers are deposited by using the cathodic vacuum arc method with different substrate bias(from 0 to 800 V),using Ti and Zr plasma flows in residual N 2 atmosphere,combined with ion bombardment of sample surfaces.The effect of pulsed bias on the structure and properties of films is investigated.Microstructure of the coating is analyzed by X-ray diffraction(XRD),and scanning electron microscopy(SEM).In addition,nanohardness,Young's modulus,and scratch tests are performed.The experimental results show that the films exhibit a nanoscale multilayer structure consisting of TiZrN and ZrN phases.Solid solutions are formed for component TiZrN films.The dominant preferred orientation of TiZrN films is(111) and(220).At a pulsed bias of 200 V,the nanohardness and the adhesion strength of the ZrN/TiZrN multilayer reach a maximum of 38 GPa,and 78 N,respectively.The ZrN/TiZrN multilayer demonstrates an enhanced nanohardness compared with binary TiN and ZrN films deposited under equivalent conditions.
基金supported financially by National Natural Science Foundation of China(No.10735090)the National Magnetic Confinement Fusion Science Program(No.2009GB106004) Scientific and Technological Project of Beijing
文摘Ti-Al-N hard films have been prepared by cathodic arc deposition by using an unipolar pulsed bias.In the present study,Ti-Al-N films were deposited on stainless steel and silicon wafers.The deposition rate,micrograph,preferred orientation and composition were systematically investigated by usingx-ray diffraction(XRD),energy dispersive X-ray spectroscopy(EDX), and a scanning electron microscope(SEM).It is shown that substate bias duty cycle and frequency have a great effect on film structure.A simple explanation for the results is also presented.
基金This work was supported by the National Natural Science Foundation of China (Grant No.50071017).
文摘Arc deposition, a widely used surface coating technique, has disadvantages such as large droplet size and high deposition temperature. Recent trend in its renovation is the introduction of pulsed bias at the. substrate. The present paper attempts to describe the deposition process of TiN films using this technique with emphasis laid on the understanding of the basic problems such as discharge plasma properties, temperature calculation, and droplet size reduction. We show that this technique improves the film micro structure and quality, lowers deposition temperature, and allows coatings on insulating substrates. After analyzing load current oscillation behaviors, we have determined that the plasma load is of capacitance nature due to plasma sheath and that it is equivalent to a circuit element consisting of parallel capacitance and resistance. At last, we point out the remaining problems and future development of the pulsed-bias arc deposition technique.
基金supported by National Natural Science Foundation of China (No.50472010)
文摘In this study, the role of the pulse duty ratio was investigated during the deposition of diamond films in a hot filament chemical vapour deposition reactor with a pulsed-tic biased substrate positively relative to the hot filaments. The voltage-current characteristics showed that the discharge current rose with the increase of biasing voltage, which was modified by the duty ratio. Before deposition, two approaches were adopted for the pre-treatment of the silicon substrates, respectively, and the substrates were scratched by diamond paste or seeded by diamond powders using the so-called 'soft dry polished' technique. Diamond films were deposited under a fixed discharge power by changing the duty ratios. In the first group with scratched substrates, it was found that under a high duty ratio the diamond grew slowly with quite poor nucleation, while in the second case a high duty ratio induced a high deposition rate and good diamond qual- ity. Reactive hydrocarbon species with high energy are essential for the initial nucleation process, which is more effectively achieved at a high biasing voltage in the condition of a low duty ratio. In the film growth process, the large discharge current at a high duty ratio represents an increased concentration of electrons and reactive species as well, promoting the growth of diamond films.
基金supported by the National Natural Science Foundation of China under grant No.50801062
文摘Orthogonal experiments are used to design the pulsed bias related parameters, including bias magnitude, duty cycle and pulse frequency, during arc ion deposition of TiN films on stainless steel substrates in the case of samples placing normal to the plasma flux. The effect of these parameters on the amount and the size distribution of droplet-particles are investigated, and the results have provided sufficient evidence for the physical model, in which particles reduction is due to the case that the particles are negatively charged and repulsed from negative pulse electric field. The effect of sample configuration on amount and size distribution of the particles are analyzed. The results of the amount and size distribution of the particles are compared to those in the case of samples placing parallel to the plasma flux.
文摘Owing to the characteristics of arc ion plating(AIP) technique, the structure and composition of TiAlN films can be tailored by controlling of various parameters such as compositions of target materials, N2 partial pressure, substrate bias and so on. In this study, several titanium aluminum nitride films were deposited on 1Cr11Ni2W2MoV steel for compressor blade of areo-engine under different d.c pulse bias voltage and nitrogen partial pressure. The effects of substrate pulse bias and nitrogen partial pressure on the deposition rate, droplet formation, microstruture and elemental component of the films were investigated.
基金supported in part by the National Natural Science Foundation of China(Nos.1162780027,31327901,and 61761136002)the Major National Basic Research Program of China(No.2013CB922401)the National Key Scientific Instrument and Equipment Development Program(No.2012YQ140005)
文摘44.6 fs pulses from a 257 MHz, mode-locked non-polarization maintaining Er-doped fiber laser based on a biased nonlinear amplifying loop mirror are reported. The output power is 104 mW and the single-pulse energy is 0.4 nJ. The minimum pulse duration of the direct output is 44.6 fs, which is the shortest in this kind of laser.