期刊文献+
共找到104篇文章
< 1 2 6 >
每页显示 20 50 100
A comparative study on the spectral characteristics of nanosecond pulsed discharges in atmospheric He and a He+2.3%H_(2)O mixture
1
作者 陈传杰 彭东宇 +4 位作者 刘博通 张婷琳 钱沐杨 周锋 王如刚 《Plasma Science and Technology》 SCIE EI CAS CSCD 2024年第6期22-30,共9页
Nanosecond pulsed discharges at atmospheric pressure in a pin-to-pin electrode configuration are well reproducible in time and space, which is beneficial to the fundamentals and applications of low-temperature plasmas... Nanosecond pulsed discharges at atmospheric pressure in a pin-to-pin electrode configuration are well reproducible in time and space, which is beneficial to the fundamentals and applications of low-temperature plasmas. In this experiment, the discharges in helium(He) and He with 2.3%water vapor(H_(2)O) are driven by a series of 10 ns overvoltage pulses(~13 k V). Special attention is paid to the spectral characteristics obtained in the center of discharges by time-resolved optical emission spectroscopy. It is found that in helium, the emission of atomic and molecular helium during the afterglow is more intense than that in the active discharge, while in the He+2.3%H_(2)O mixture, helium emission is only observed during the discharge pulse and the molecular helium emission disappears. In addition, the emissions of OH(A-X) and Hα present similar behavior that increases sharply during the falling edge of the voltage pulse as the electrons cool down rapidly. The gas temperature is set to remain low at 540 K by fitting the OH(A-X) band. A comparative study on the emission of radiative species(He, He_(2), OH and H)is performed between these two discharge cases to derive their main production mechanisms. In both cases, the dominant primary ion is He^(+) at the onset of discharges, but their He^(+) charge transfer processes are quite different. Based on these experimental data and a qualitative discussion on the discharge kinetics, with regard to the present discharge conditions, it is shown that the electron-assisted three-body recombination processes appear to be the significant sources of radiative OH and H species in high-density plasmas. 展开更多
关键词 nanosecond repetitively pulsed discharge helium and water vapor optical emission spectroscopy atmospheric pressure micro-discharge kinetics
下载PDF
Comparative study on the degradation of phenol by a high-voltage pulsed discharge above a liquid surface and under a liquid surface
2
作者 赵泉发 武海霞 +3 位作者 沈旺 韩霄 郑镔 樊佳炜 《Plasma Science and Technology》 SCIE EI CAS CSCD 2023年第10期15-25,共11页
The degradation of phenol by pulsed discharge plasma above a liquid surface(APDP) and under a liquid surface(UPDP) was compared.The effects of discharge voltage,discharge distance,initial solution conductivity and ini... The degradation of phenol by pulsed discharge plasma above a liquid surface(APDP) and under a liquid surface(UPDP) was compared.The effects of discharge voltage,discharge distance,initial solution conductivity and initial p H on the removal of phenol were studied.It was concluded that the removal of phenol increases with increasing discharge voltage and with decreasing discharge distance in both APDP and UPDP systems.An increase in the initial solution’s conductivity has a positive effect in the APDP system but a negative effect in the UPDP system.In addition,alkaline conditions are conducive to the degradation of phenol in the APDP system,while acidic conditions are conducive in the UPDP system.Free radical quenching experiments revealed that ·O-2has an important influence on the degradation of phenol in the APDP system,while ·OH plays a key role in the UPDP system.This paper verifies the differences in the two discharge methods in terms of phenol removal. 展开更多
关键词 pulsed discharge plasma discharge above liquid surface discharge under liquid surface phenol wastewater active radicals
下载PDF
Modeling study on different discharge characteristics in pulsed discharges with and without barriers on electrodes
3
作者 高书涵 王绪成 张远涛 《Plasma Science and Technology》 SCIE EI CAS CSCD 2023年第5期56-68,共13页
High-pressure nanosecond pulsed discharges(NPDs)have attracted increasing attention in recent years due to their wide potential applications.In this study,a barrier-free NPD in pure helium plasma at 120 Torr was numer... High-pressure nanosecond pulsed discharges(NPDs)have attracted increasing attention in recent years due to their wide potential applications.In this study,a barrier-free NPD in pure helium plasma at 120 Torr was numerically investigated by a one-dimensional self-consistent fluid model,and its current–voltage characteristics show very different behaviors from those in pulsed dielectric barrier discharges(DBDs),indicating an entirely distinctive discharge evolution in pulsed discharges with or without barriers on electrodes.Without the control of barriers,the computational data suggest that the discharge current increases very sharply during the plateau phase of the pulsed voltage and reaches its peak value at approximately the instant when the pulsed voltage starts to drop,together with a gradual reduction in the sheath thickness and an increase in electric field in the sheath region,which is in good agreement with experimental observations.By increasing the voltage plateau width and repetition frequency,the discharge current density from the simulation can be substantially enhanced,which cannot be observed in conventional pulsed DBDs,and the spatial distributions of the electric field and charged particles are given to unravel the underlying physics.From the computational data,the distinctive discharge characteristics in barrier-free NPDs are deeply understood,and could be further optimized by tailoring the waveform of the pulsed voltage to obtain desirable plasmas for applications. 展开更多
关键词 numerical simulation pulsed discharges barrier-free discharge
下载PDF
Treatment of Dye Wastewater by Using a Hybrid Gas/Liquid Pulsed Discharge Plasma Reactor 被引量:5
4
作者 鲁娜 李杰 +1 位作者 吴彦 佐藤正之 《Plasma Science and Technology》 SCIE EI CAS CSCD 2012年第2期162-166,共5页
A hybrid gas/liquid pulsed discharge plasma reactor using a porous ceramic tube is proposed for dye wastewater treatment. High voltage pulsed discharge plasma was generated in the gas phase and simultaneously the plas... A hybrid gas/liquid pulsed discharge plasma reactor using a porous ceramic tube is proposed for dye wastewater treatment. High voltage pulsed discharge plasma was generated in the gas phase and simultaneously the plasma channel was permeated through the tiny holes of the ceramic tube into the water phase accompanied by gas bubbles. The porous ceramic tube not only separated the gas phase and liquid phase but also offered an effective plasma spreading channel. The effects of the peak pulse voltage, additive gas varieties, gas bubbling rate, solution conductivity and TiO2 addition were investigated. The results showed that this reactor was effective for dye wastewater treatment. The decoloration efficiency of Acid Orange II was enhanced with an increase in the power supplied. Under the studied conditions, 97% of Acid Orange II in aqueous solution was effectively decolored with additive oxygen gas, which was 51% higher than that with argon gas, and the increasing 02 bubbling rate also benefited the decoloration of dye wastewater. Water conductivity had a small effect on the level of decoloration. Catalysis of TiO2 could be induced by the pulsed discharge plasma and addition of TiO2 aided the decoloration of Acid Orange II. 展开更多
关键词 pulsed discharge plasma porous ceramic tube dye wastewater DECOLORATION
下载PDF
Regeneration of Acid Orange 7 Exhausted Granular Activated Carbon Using Pulsed Discharge Plasmas 被引量:1
5
作者 王慧娟 郭贺 +1 位作者 刘永杰 依成武 《Plasma Science and Technology》 SCIE EI CAS CSCD 2015年第10期881-886,共6页
In this paper, a pulsed discharge plasma (PDP) system with a multi-needle-to-plate electrodes geometry was set up to investigate the regeneration of acid orange 7 (AO7) exhausted granular activated carbon (GAC).... In this paper, a pulsed discharge plasma (PDP) system with a multi-needle-to-plate electrodes geometry was set up to investigate the regeneration of acid orange 7 (AO7) exhausted granular activated carbon (GAC). Regeneration of GAC was studied under different conditions of peak pulse discharge voltage and water pH, as well as the modification effect of GAC by the pulse discharge process, to figure out the regeneration efficiency and the change of the GAC structure by the PDP treatment. The obtained results showed that there was an appropriate peak pulse voltage and an optimal initial pH value of the solution for GAC regeneration. Analyses of scanning electron microscope (SEM), Boehm titration, Brunauer-Emmett-Teller (BET), Horvath-Kawazoe (HK), and X-ray Diffraction (XRD) showed that there were more mesopore and macropore in the regenerated GAC and the structure turned smoother with the increase of discharge voltage; the amount of acidic functional groups on the GAC surface increased while the amount of basic functional groups decreased after the regeneration process. From the result of the XRD analysis, there were no new substances produced on the GAC after PDP treatment. 展开更多
关键词 pulsed discharge plasma acid orange 7 granular activated carbon REGENERATION pore structure functional groups
下载PDF
Numerical Simulation of Properties of Charged Particles Initiated by Underwater Pulsed Discharge
6
作者 兰生 杨嘉祥 +2 位作者 A.SAMEE 蒋杰灵 周志强 《Plasma Science and Technology》 SCIE EI CAS CSCD 2009年第4期481-486,共6页
Governing conservation equations for energy, momentum, mass and charge were deduced. Based upon these equations and the Saha equation, the particle density, temperature and pressure of the channel initiated by underwa... Governing conservation equations for energy, momentum, mass and charge were deduced. Based upon these equations and the Saha equation, the particle density, temperature and pressure of the channel initiated by underwater pulsed discharge, are simulated. Influence of temperature and pressure on particles density is also analyzed. Some of the simulation results are in an agreement with experimental results. The results will be helpful in further understanding of the formation mechanism of underwater pulsed discharge plasma. 展开更多
关键词 PLASMA underwater pulsed discharge charged particle numerical simulation
下载PDF
Kinetic analysis of soil contained pyrene oxidation by a pulsed discharge plasma process
7
作者 王慧娟 周广顺 +1 位作者 郭贺 耿聪 《Plasma Science and Technology》 SCIE EI CAS CSCD 2017年第1期72-78,共7页
A pulsed discharge plasma(PDP) reactor with net anode and net cathode was established for investigating the pyrene degradation in soil under different pulse peak voltage,air flow rate,pyrene content in soil,initial ... A pulsed discharge plasma(PDP) reactor with net anode and net cathode was established for investigating the pyrene degradation in soil under different pulse peak voltage,air flow rate,pyrene content in soil,initial p H value and initial water content of the soil.Pyrene oxidation within the 60 min discharge time was fitting according to the pseudo-first order equation and the corresponding reaction kinetics constants(k values) were calculated.The obtained results show that pyrene oxidation under all the different reaction conditions obeyed the pseudo-first order equation well.Higher pulsed peak voltage and appropriate air flow rate were in favor of the increase of reaction rate of pyrene oxidation.A higher k value could be achieved in the lower initial pyrene content(the value was 100 mg kg^-1).The k value of pyrene oxidation in the case of p H=4 was 11.2 times higher than the value obtained under the condition of p H=9,while the initial water content of the soil also has a large effect on the oxidation rate of pyrene due to the effect of PDP. 展开更多
关键词 pyrene oxidation in soil pulsed discharge plasma kinetic analysis k value
下载PDF
Exploration of a MgO cathode for improving the intensity of pulsed discharge plasma at atmosphere
8
作者 郭贺 姚晓妹 +2 位作者 李杰 姜楠 吴彦 《Plasma Science and Technology》 SCIE EI CAS CSCD 2018年第10期104-111,共8页
With regard to the lower density and energy of electrons in pulsed discharge plasma (PDP) at atmosphere, leading to the lower energy utilization of plasma, we propose a MgO cathode to enhance the plasma intensity ac... With regard to the lower density and energy of electrons in pulsed discharge plasma (PDP) at atmosphere, leading to the lower energy utilization of plasma, we propose a MgO cathode to enhance the plasma intensity according to field emission principle. The MgO cathode is prepared by an electro-depositing MgO film on a stainless steel plate. This way, the positive charges come to the cathode and accumulate on the surface of the MgO film, leading to the enhancement of the electric field intensity between the cathode and MgO film, and result in the strong emission of secondary electrons from the MgO cathode. As a result, the intensity of plasma can be enhanced. Herein, the effect of the MgO cathode on the intensity of PDP is investigated. It was shown that the discharge peak current was improved by 20% compared with that of without the MgO cathode. With increasing the MgO film thickness, discharge intensity, including the peak current, transforming charge and spectrum intensity first increased and then decreased. Higher enhancement of peak current, transforming charge and spectrum intensity were acquired with a higher peak voltage. Compared to a cathode without MgO film, the ozone production is higher with MgO cathode employed. The research proposes a novel approach for improving the intensity of discharge plasma, and also provides a reference for further application of PDP. 展开更多
关键词 discharge intensity pulsed discharge plasma MgO cathode secondary electron emission
下载PDF
Spatiotemporal characteristics of nanosecond pulsed discharge in an extremely asymmetric electric field at atmospheric pressure
9
作者 张丽 杨德正 +1 位作者 王森 王文春 《Plasma Science and Technology》 SCIE EI CAS CSCD 2017年第6期38-44,共7页
In this paper,high resolution temporal-spatial diagnostics are employed to research the optical characteristics of nanosecond pulsed dielectric barrier discharge in needle-plate electrode configuration.Temporal-spatia... In this paper,high resolution temporal-spatial diagnostics are employed to research the optical characteristics of nanosecond pulsed dielectric barrier discharge in needle-plate electrode configuration.Temporal-spatial distributions of discharge images,the emission intensities of optical emission spectra,and plasma vibrational and rotational temperatures are investigated.By analyzing the evolution of vibrational and rotational temperatures in space and time dimensions,the energy distribution and energy transfer process in plasma are also discussed.It is found that a diffuse structure with high density plasma concentrated in the region near the needle tip can be presented in nanosecond pulsed discharge,and an obvious energy transfer from electronic energy to vibration energy can be observed in each discharge pulse. 展开更多
关键词 nanosecond pulsed discharge spatiotemporal emission spectrum reduced electric field breakdown mechanism
下载PDF
Relative Responses of Noble Gases Using a Pulsed Discharge Helium Photoionization Detector:Theoretical Calculation and Experimental Determination
10
作者 ZHANG Hai-tao WU Di ZHANG Li-xing 《Chemical Research in Chinese Universities》 SCIE CAS CSCD 2008年第4期516-519,共4页
The relative response factors(RRFs) for noble gas(Ng) were determined on a pulsed discharge helium photoionization detector. Using ab initio method, the atomic orbitals of noble gas were calculated and used to det... The relative response factors(RRFs) for noble gas(Ng) were determined on a pulsed discharge helium photoionization detector. Using ab initio method, the atomic orbitals of noble gas were calculated and used to determine the number of ionizable electrons on the basis of the continuous emission of He2. The molar responses of noble gases is well correlated with the number of ionizable electrons. 展开更多
关键词 Relative response Noble gas pulsed discharge helium photoionization detector
下载PDF
The Catalytic Effect of Metal Ions on the Degradation of 4-Chlorophenol Induced by an Aqueous Pulsed Discharge Plasma
11
作者 郝小龙 张兴旺 雷乐成 《Plasma Science and Technology》 SCIE EI CAS CSCD 2013年第7期677-684,共8页
The influence of metal ions, such as Fe^2+, Fe^3+, Cu^2+ and Mn^2+, on 4-CP degrada-tion was investigated in an aqueous pulsed discharge plasma system with or without the addition of a TiO2 photo-catalyst. From an... The influence of metal ions, such as Fe^2+, Fe^3+, Cu^2+ and Mn^2+, on 4-CP degrada-tion was investigated in an aqueous pulsed discharge plasma system with or without the addition of a TiO2 photo-catalyst. From an analysis of the pseudo first-order rate constant (kcp) and energy efficiency (G50%) for 4-CP degradation, the experimental results show that the degrada- tion of 4-CP is much enhanced in the presence of ferrous ions at the optimal concentration of 0.2-0.8 mmol/L or 0.2 mmol/L in an aqueous pulsed discharge plasma without or with the TiO2 system, respectively, and the enhancement is ascribed to plasma induced Fenton and photo-Fenton reactions. Meanwhile, the rank of such metal ions for catalytic effect on 4-CP degradation was Fe^2+〉 Fe^3+ 〉 Cu^2+ 〉 Mn^2+ and Fe^2+ 〉 Fe^3+ 〉 Mn^2+ 〉 Cu^2+ for the former and the latter systems, respectively, and the reasons behind this were discussed through the analysis of active species, especially hydrogen peroxide. 展开更多
关键词 aqueous pulsed discharge plasma metal ions para-chlorophenol degradation plasma catalysis
下载PDF
Strengthening leaching effect of Carlin-type gold via high-voltage pulsed discharge pretreatment 被引量:1
12
作者 Peng Gao Yong-hong Qin +2 位作者 Yue-xin Han Yan-jun Li Si-ying Liu 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2021年第6期965-973,共9页
A high-voltage pulsed discharge(HVPD)pretreatment was used to strengthen the leaching effect of Carlin-type gold ore containing arsenic.Optimal results of the pretreatment experiments were obtained at the following op... A high-voltage pulsed discharge(HVPD)pretreatment was used to strengthen the leaching effect of Carlin-type gold ore containing arsenic.Optimal results of the pretreatment experiments were obtained at the following operating conditions:a spherical gap spacing of 20 mm,pulse number of 100,and voltage of 30 kV.The leaching rate of gold was increased by 15.65%via the HVPD pretreatment.The mass fraction of–0.5+0.35 mm and–0.35+0.1 mm was increased by 10.97%and 6.83%compared to the untreated samples,respectively,and the Au grade of–0.1 mm was increased by 22.84%.However,the superiority of the HVPD pretreatment would be weakened by prolonged grinding time.Scanning electron microscopy results indicated that the pretreated products presented as a melting state and then condensation,accompanying by some pore formation.More micro-cracks were generated at the interface of the ore and the original crack were expended via pulsed discharge pretreatment,with the contact area between the leaching reagent and ore increased,the leaching reaction rate enhanced and the leaching effect strengthened. 展开更多
关键词 high-voltage pulse discharge pretreatment Carlin-type gold leaching rate particle size distribution MICRO-CRACKS
下载PDF
Activation of peroxydisulfate by gas-liquid pulsed discharge plasma to enhance the degradation of p-nitrophenol 被引量:1
13
作者 商克峰 王浩 +3 位作者 李杰 鲁娜 姜楠 吴彦 《Plasma Science and Technology》 SCIE EI CAS CSCD 2017年第6期116-122,共7页
Pulsed discharge in water and over water surfaces generates ultraviolet radiation,local high temperature,shock waves,and chemical reactive species,including hydroxyl radicals,hydrogen peroxide,and ozone.Pulsed dischar... Pulsed discharge in water and over water surfaces generates ultraviolet radiation,local high temperature,shock waves,and chemical reactive species,including hydroxyl radicals,hydrogen peroxide,and ozone.Pulsed discharge plasma(PDP) can oxidize and mineralize pollutants very efficiently,but high energy consumption restricts its application for industrial wastewater treatment.A novel method for improving the energy efficiency of wastewater treatment by PDP was proposed,in which peroxydisulfate(PDS) was added to wastewater and PDS was activated by PDP to produce more strong oxidizing radicals,including sulfate radicals and hydroxyl radicals,leading to a higher oxidation capacity for the PDP system.The experimental results show that the increase in solution conductivity slightly decreased the discharge power of the pulse discharge over the water surface.An increase in the discharge intensity improved the activation of PDS and therefore the degradation efficiency and energy efficiency of p-nitrophenol(PNP).An increase in the addition dosage of PDS greatly facilitated the degradation of PNP at a molar ratio of PDS to PNP of lower than 80:1,but the performance enhancement was no longer obvious at a dosage of more than 80:1.Under an applied voltage of 20 kV and a gas discharge gap of 2 mm,the degradation efficiency and energy efficiency of the PNP reached 90.7%and45.0 mg kWh^(-1) for the plasma/PDS system,respectively,which was 34%and 18.0 mg kWh^(-1)higher than for the discharge plasma treatment alone.Analysis of the physical and chemical effects indicated that ozone and hydrogen peroxide were important for PNP degradation and UV irradiation and heat from the discharge plasma might be the main physical effects for the activation of PDS. 展开更多
关键词 gas-liquid pulse discharge PERSULFATE sulfate radical hydroxyl radical P-NITROPHENOL
下载PDF
The Effect of the Quartz Tube on the Appearance of Nanosecond Pulsed Discharge in Air
14
作者 吕晓桂 任春生 +2 位作者 马腾才 朱海龙 王德真 《Plasma Science and Technology》 SCIE EI CAS CSCD 2010年第2期177-180,共4页
An experimental investigation of a nanosecond pulsed dielectric barrier discharge in atmospheric air is presented. In the setup a quartz tube was inserted between the cone and plane electrodes in the direction paralle... An experimental investigation of a nanosecond pulsed dielectric barrier discharge in atmospheric air is presented. In the setup a quartz tube was inserted between the cone and plane electrodes in the direction parallel to the electric field. It was shown that the appearance and property of the discharge were sensitive to the size and the position of the quartz tube. When the tube was placed on the grounded plane electrode, the discharge intensity was found to improve gradually with the increase in the diameter of the quartz tube. Furthermore, with an appropriate distance between the bottom edge of the quartz tube and the plane electrode, the discharge tended to exhibit better performance in generating homogeneous diffusive plasma. The possible mechanism is discussed. 展开更多
关键词 nanosecond pulsed dielectric barrier discharge atmospheric air homogeneous diffuse plasma
下载PDF
Electron characteristics and dynamics in sub-millimeter pulsed atmospheric dielectric barrier discharge
15
作者 方骏林 张亚容 +4 位作者 卢陈梓 顾莉莉 徐少锋 郭颖 石建军 《Chinese Physics B》 SCIE EI CAS CSCD 2024年第1期496-502,共7页
The discharge characteristics and mechanism of sub-millimeter pulsed dielectric barrier discharge in atmosphericpressure helium are investigated experimentally and theoretically, demonstrating that when the discharge ... The discharge characteristics and mechanism of sub-millimeter pulsed dielectric barrier discharge in atmosphericpressure helium are investigated experimentally and theoretically, demonstrating that when the discharge gap distance is reduced from 1.00 mm to 0.20 mm, the discharge ignition time is reduced to approximately 40 ns and discharge intensity is enhanced in terms of the discharge optical emission intensity and density of the plasma species,(energetic electrons with energy above 8.40 e V). The simulated results show that as the discharge gap distance is further reduced to 0.10 mm,the number of energetic electrons decreases, which is attributable to the contraction of plasma bulk regime and reduction of electron density in the discharge bulk. Conversely, the proportion of energetic electrons to the total electrons in the discharge monotonically increases as the discharge gap distance is reduced from 1.00 mm to 0.10 mm. It is proposed that a gap distance of 0.12 mm is optimal to achieve a high concentration and proportion of energetic electrons in sub-millimeter pulsed atmosphere dielectric barrier discharge. 展开更多
关键词 sub-millimeter pulsed discharge plasma simulation electron dynamics and sheath
下载PDF
Experimental study on the effect of H_(2)O and O_(2) on the degradation of SF_(6) by pulsed dielectric barrier discharge
16
作者 李亚龙 万昆 +5 位作者 王宇非 张晓星 杨照迪 傅明利 卓然 王邸博 《Plasma Science and Technology》 SCIE EI CAS CSCD 2024年第2期125-131,共7页
SF_(6) has excellent insulation performance and arc extinguishing ability,and is widely used in the power industry.However,its global warming potential is about 23,500 times that of C0_(2),it can exist stably in the a... SF_(6) has excellent insulation performance and arc extinguishing ability,and is widely used in the power industry.However,its global warming potential is about 23,500 times that of C0_(2),it can exist stably in the atmosphere,it is not easily degradable and is of great potential harm to the environment.Based on pulsed dielectric barrier discharge plasma technology,the effects of H_(2)O and 0_(2) on the degradation of SF_(6) were studied.Studies have shown that H_(2)O can effectively promote the decomposition of SF_(6) and improve its degradation rate and energy efficiency of degradation.Under the action of a pulse input voltage and input frequency of 15 kV and 15 kHz,respectively,when H_(2)O is added alone the effect of 1% H_(2)O is the best,and the rate and energy efficiency of degradation of SF_(6) reach their maximum values,which are 91.9% and 8.25 g kWh^(-1),respectively.The synergistic effect of H_(2)O and O_(2) on the degradation of SF_(6) was similar to that of H_(2)O.When the concentration of H_(2)O and O_(2) was 1%,the system obtained the best rate and energy efficiency of degradation,namely 89.7% and 8.05 g kWh~(-1),respectively.At the same time,different external gases exhibit different capabilities to regulate decomposition products.The addition of H_(2)O can effectively improve the selectivity of S0_(2).Under the synergistic effect of H_(2)O and O_(2),with increase in O_(2) concentration the degradation products gradually transformed into SO_(2)F_(2).From the perspective of harmless treatment of the degradation products of SF_(6),the addition of O_(2) during the SF_(6) degradation process should be avoided. 展开更多
关键词 SF_(6) pulsed dielectric barrier discharge DEGRADATION discharge gas
下载PDF
Pulsed gas–liquid discharge plasma catalytic degradation of bisphenol A over graphene/Cd S:process parameters optimization and O_(3)activation mechanism analysis
17
作者 姜楠 李学川 +4 位作者 李举 李杰 廖兵 彭邦发 刘国 《Plasma Science and Technology》 SCIE EI CAS CSCD 2023年第10期81-90,共10页
In the present work,pulsed gas–liquid hybrid discharge plasma coupled with graphene/Cd S catalyst was evaluated to eliminate bisphenol A(BPA)in wastewater.The optimization of a series of process parameters was perfor... In the present work,pulsed gas–liquid hybrid discharge plasma coupled with graphene/Cd S catalyst was evaluated to eliminate bisphenol A(BPA)in wastewater.The optimization of a series of process parameters was performed in terms of BPA degradation performance.The experimental results demonstrated that nearly 90%of BPA(20 mg l^(-1))in the synthetic wastewater(p H=7.5,σ=10μS m^(-1))was degraded by the plasma catalytic system over 0.2 g l^(-1)graphene/Cd S at 19k V with a 4 l min^(-1)air flow rate and 10 mm electrode gap within 60 min.The BPA removal rate increased with increasing the discharge voltage and decreasing the initial BPA concentration or solution conductivity.Nevertheless,either too high or too low an air flow rate,electrode gap,catalyst dosage or initial solution p H would lead to a decrease in BPA degradation.Moreover,optical emission spectroscopy was used to gain information on short-lived reactive species formed from the pulsed gas–liquid hybrid discharge plasma system.The results indicated the existence of several highly oxidative free radicals such as·O and·OH.Finally,the activation pathway of O_(3)on the catalyst surface was analyzed by density functional theory. 展开更多
关键词 pulsed discharge gas-liquid discharge wastewater treatment parameters optimization DFT calculation
下载PDF
Simulation of the spatio-temporal evolution of the electron energy distribution function in a pulsed hollow-cathode discharge
18
作者 N A ASHURBEKOV K O IMINOV +3 位作者 K M RABADANOV G S SHAKHSINOV M Z ZAKARYAEVA M B KURBANGADZHIEVA 《Plasma Science and Technology》 SCIE EI CAS CSCD 2023年第3期87-94,共8页
This article presents the 2D simulation results of a nanosecond pulsed hollow cathode discharge obtained through a combination of fluid and kinetic models.The spatio-temporal evolution of the electron energy distribut... This article presents the 2D simulation results of a nanosecond pulsed hollow cathode discharge obtained through a combination of fluid and kinetic models.The spatio-temporal evolution of the electron energy distribution function(EEDF)of the plasma column and electrical characteristics of the nanosecond pulsed hollow cathode discharge at a gas pressure of 5 Torr are studied.The results show that the discharge development starts with the formation of an ionization front at the anode surface.The ionization front splits into two parts in the cathode cavity while propagating along its lateral surfaces.The ionization front formation leads to an increase in the fast isotropic EEDF component at its front,as well as in the anisotropic EEDF component.The accelerated electrons enter the cathode cavity,which significantly contributes to the formation of the highenergy EEDF component and EEDF anisotropy. 展开更多
关键词 pulsed nanosecond discharge electron energy distribution fuinction hollow cathode electron kinetics gas discharge
下载PDF
Inactivation of Bacteria in Oil Field Injected Water by a Pulsed Plasma Discharge Process 被引量:2
19
作者 辛青 李中坚 +1 位作者 雷乐成 杨彬 《Plasma Science and Technology》 SCIE EI CAS CSCD 2016年第9期943-949,共7页
Pulsed plasma discharge was employed to inactivate bacteria in the injection water for an oil field. The effects of water conductivity and initial concentration of bacteria on elimination efficiency were investigated ... Pulsed plasma discharge was employed to inactivate bacteria in the injection water for an oil field. The effects of water conductivity and initial concentration of bacteria on elimination efficiency were investigated in the batch and continuous flow modes. It was demonstrated that Fe2+ contained in injection water could enhance the elimination efficiency greatly. The addition of reducing agent glutathione (GSH) indicated that active radicals generated by pulsed plasma discharges played an important role in the inactivation of bacteria. Moreover, it was found that the microbial inactivation process for both batch and continuous flow mode well fitted the model based on the Weibull's survival function. 展开更多
关键词 high-voltage pulsed discharge water injection bacteria inactivation oilindustry
下载PDF
A comparative study on the activity of TiO_2 in pulsed plasma under different discharge conditions 被引量:2
20
作者 段丽娟 姜楠 +3 位作者 鲁娜 商克峰 李杰 吴彦 《Plasma Science and Technology》 SCIE EI CAS CSCD 2018年第5期61-70,共10页
In the present study,a combination of pulsed discharge plasma and TiO2(plasma/TiO2)has been developed in order to study the activity of TiO2by varying the discharge conditions of pulsed voltage,discharge mode,air fl... In the present study,a combination of pulsed discharge plasma and TiO2(plasma/TiO2)has been developed in order to study the activity of TiO2by varying the discharge conditions of pulsed voltage,discharge mode,air flow rate and solution conductivity.Phenol was used as the chemical probe to characterize the activity of TiO2in a pulsed discharge system.The experimental results showed that the phenol removal efficiency could be improved by about 10%by increasing the applied voltage.The phenol removal efficiency for three discharge modes in the plasma-discharge-alone system was found to be highest in the spark mode,followed by the spark–streamer mode and finally the streamer mode.In the plasma/TiO2system,the highest catalytic effect of TiO2was observed in the spark–streamer discharge mode,which may be attributed to the favorable chemical and physical effects from the spark–streamer discharge mode,such as ultraviolet light,O3,H2O2,pyrolysis,shockwaves and high-energy electrons.Meanwhile,the optimal flow rate and conductivity were 0.05 m^3l^(-1)and 10μS cm^(-1),respectively.The main phenolic intermediates were hydroquinone,catechol,and p-benzoquinone during the discharge treatment process.A different phenol degradation pathway was observed in the plasma/TiO2system as compared to plasma alone.Analysis of the reaction intermediates demonstrated that p-benzoquinone reduction was selectively catalyzed on the TiO2surface.The effective decomposition of phenol constant(De)increased from 74.11%to 79.16%when TiO2was added,indicating that higher phenol mineralization was achieved in the plasma/TiO2system. 展开更多
关键词 pulsed discharge plasma TIO2 phenol degradation discharge conditions
下载PDF
上一页 1 2 6 下一页 到第
使用帮助 返回顶部