Introduction: Transcranial Doppler is a simple, non-invasive and inexpensive examination which allows the assessment of cerebral perfusion. In countries with limited resources, which do not have a means of monitoring ...Introduction: Transcranial Doppler is a simple, non-invasive and inexpensive examination which allows the assessment of cerebral perfusion. In countries with limited resources, which do not have a means of monitoring intracranial pressure, this examination offers hope of survival for patients with traumatic brain injury. This study was designed to investigate the incidence of early cerebral circulation abnormalities after traumatic brain injury using transcranial Doppler (TCD). Methodology: A descriptive and analytical study was conducted over one year, including patients with traumatic brain injury and an initial Glasgow Coma Scale (GCS) score of less than 15. Non-inclusion criteria: Stroke, brain tumor, cerebral abscess. Exclusion criteria: Inadequate insonation window. Results: Out of 854 traumatic brain injury patients admitted to the emergency department, 112 were included in the study. The average age was 30.14 years, with a sex ratio of 4.1. Initially, 83.5% had moderate traumatic brain injury, and 12.1% had severe traumatic brain injury. Brain CT scans were performed in 95.7% of the patients. Edematous-hemorrhagic contusion was observed in 95% of the patients. On initial TCD, the pulsatility index in the middle cerebral artery was greater than 1.3 in 49.4% of the patients. Diastolic velocity was less than 20 cm/s in 46.4% of cases, and mean velocity was greater than 150 cm/s in 8.7% of cases. In this group, low diastolic velocity indicated cerebral hypoperfusion suggestive of intracranial hypertension. When the pulsatility index was greater than 1.9, no patient had a normal diastolic velocity. Among patients with severe traumatic brain injury, 61.5% had an abnormal pulsatility index compared to 42.3% of patients with moderate traumatic brain injury. Conclusion: TCD is a simple tool for analyzing intracerebral hemodynamics.展开更多
Improvement of photosynthetic efficiency is a major approach to increase crop yield potential.Previously,we cloned a gene encoding the chloroplast-located putative monooxygenase TCD5,which is essential in plastid deve...Improvement of photosynthetic efficiency is a major approach to increase crop yield potential.Previously,we cloned a gene encoding the chloroplast-located putative monooxygenase TCD5,which is essential in plastid development under low temperature in rice(Oryza sativa L.).In this study,the effects of TCD5 on the photosynthesis and the yields were investigated in rice.Two sets of genetic materials with three levels of TCD5 expression,including tcd5 mutant or TCD5 RNAi transgenic lines and TCD5 over-expression transgenic lines in Jiahua1 and Nipponbare backgrounds,were used in the field trails of multi-locations and multi-years.TCD5 positively affected the panicle number and the yield at dosage.Compared with the wild-types,the panicle numbers were 12.4%-14.6%less in tcd5 mutant and 8.3%-38.6%less in TCD5 RNAi lines,but 26.2%-61.8%more in TCD5 over-expression lines.The grain yields per plant were 9.1%-18.4%less in tcd5 mutant and 14.3%-56.7%less in TCD5 RNAi lines,but 6.9%-56.5%more in TCD5 over-expression lines.The measurements of net photosynthetic rate indicated that mutation or knock down of TCD5 decreased the net photosynthetic rate by 10.4%and 15.6%,respectively,while increasing it by 8.9%and 8.7%in the TCD5 over-expression lines in Jiahua1 and Nipponbare backgrounds,respectively.Accordingly,the measurements of chlorophyll fluorescence parameters showed that the electron transport rate and quantum yield decreased in tcd5 mutant or TCD5 RNAi lines but increased in TCD5 overexpression lines,both in Jiahua1 and Nipponbare backgrounds.IP-MS screening revealed that TCD5 interacts with 29 chloroplast proteins involved in chlorophyll synthesis,photo-reactions of the photosynthesis,carbon assimilation and metabolism,energy metabolism,redox balance,protein synthesis and transportation.Two TCD5 interacted proteins,D1 and FBA were effective targets for improving photosynthesis.These results suggest a potentially new strategy for increasing rice yield by enhancing photosynthesis.展开更多
文摘Introduction: Transcranial Doppler is a simple, non-invasive and inexpensive examination which allows the assessment of cerebral perfusion. In countries with limited resources, which do not have a means of monitoring intracranial pressure, this examination offers hope of survival for patients with traumatic brain injury. This study was designed to investigate the incidence of early cerebral circulation abnormalities after traumatic brain injury using transcranial Doppler (TCD). Methodology: A descriptive and analytical study was conducted over one year, including patients with traumatic brain injury and an initial Glasgow Coma Scale (GCS) score of less than 15. Non-inclusion criteria: Stroke, brain tumor, cerebral abscess. Exclusion criteria: Inadequate insonation window. Results: Out of 854 traumatic brain injury patients admitted to the emergency department, 112 were included in the study. The average age was 30.14 years, with a sex ratio of 4.1. Initially, 83.5% had moderate traumatic brain injury, and 12.1% had severe traumatic brain injury. Brain CT scans were performed in 95.7% of the patients. Edematous-hemorrhagic contusion was observed in 95% of the patients. On initial TCD, the pulsatility index in the middle cerebral artery was greater than 1.3 in 49.4% of the patients. Diastolic velocity was less than 20 cm/s in 46.4% of cases, and mean velocity was greater than 150 cm/s in 8.7% of cases. In this group, low diastolic velocity indicated cerebral hypoperfusion suggestive of intracranial hypertension. When the pulsatility index was greater than 1.9, no patient had a normal diastolic velocity. Among patients with severe traumatic brain injury, 61.5% had an abnormal pulsatility index compared to 42.3% of patients with moderate traumatic brain injury. Conclusion: TCD is a simple tool for analyzing intracerebral hemodynamics.
基金funded by the National Natural Science Foundation of China(Grand No.U19A2025)Scientific Research Foundation of China Jiliang University.
文摘Improvement of photosynthetic efficiency is a major approach to increase crop yield potential.Previously,we cloned a gene encoding the chloroplast-located putative monooxygenase TCD5,which is essential in plastid development under low temperature in rice(Oryza sativa L.).In this study,the effects of TCD5 on the photosynthesis and the yields were investigated in rice.Two sets of genetic materials with three levels of TCD5 expression,including tcd5 mutant or TCD5 RNAi transgenic lines and TCD5 over-expression transgenic lines in Jiahua1 and Nipponbare backgrounds,were used in the field trails of multi-locations and multi-years.TCD5 positively affected the panicle number and the yield at dosage.Compared with the wild-types,the panicle numbers were 12.4%-14.6%less in tcd5 mutant and 8.3%-38.6%less in TCD5 RNAi lines,but 26.2%-61.8%more in TCD5 over-expression lines.The grain yields per plant were 9.1%-18.4%less in tcd5 mutant and 14.3%-56.7%less in TCD5 RNAi lines,but 6.9%-56.5%more in TCD5 over-expression lines.The measurements of net photosynthetic rate indicated that mutation or knock down of TCD5 decreased the net photosynthetic rate by 10.4%and 15.6%,respectively,while increasing it by 8.9%and 8.7%in the TCD5 over-expression lines in Jiahua1 and Nipponbare backgrounds,respectively.Accordingly,the measurements of chlorophyll fluorescence parameters showed that the electron transport rate and quantum yield decreased in tcd5 mutant or TCD5 RNAi lines but increased in TCD5 overexpression lines,both in Jiahua1 and Nipponbare backgrounds.IP-MS screening revealed that TCD5 interacts with 29 chloroplast proteins involved in chlorophyll synthesis,photo-reactions of the photosynthesis,carbon assimilation and metabolism,energy metabolism,redox balance,protein synthesis and transportation.Two TCD5 interacted proteins,D1 and FBA were effective targets for improving photosynthesis.These results suggest a potentially new strategy for increasing rice yield by enhancing photosynthesis.