Casing-while-drilling(CWD)with down the hole(DTH)hammer drilling technology has been widely used in unconsolidated formations,due to its advantages in protecting the borehole wall,excellent rock cuttings capacity,and ...Casing-while-drilling(CWD)with down the hole(DTH)hammer drilling technology has been widely used in unconsolidated formations,due to its advantages in protecting the borehole wall,excellent rock cuttings capacity,and fast penetration rate in hard rock.As an important component of the CWD system,the structure of the retractable drill bit needs not only to ensure to form stronger reverse circulation,but also to be expandable or retractable as needed,otherwise the drill bit cannot be lift and put down smoothly in the casing,and may lead to drilling accidents.This paper developed a new type of reverse circulation DTH hammer drill bit used for CWD drilling technology.The retractable performance of this type of drill bit is studied using ADAMS software.The results show that it is smoothly expandable and retractable as designed under the conditions of the weight of the bit(WOB)of 0.5–2.0 t and the rotation speed of 30–60 r/min.To investigate the reverse circulation effect of the drill bit,Fluent software was used to simulate the flow characteristic inside it.The simulation results indicated that it can form strong reverse circulation,and the entrainment ratio h can reach 9.5%.展开更多
Development of unconventional tight oil and gas reservoirs such as shale pays presents a huge challenge to the petroleum industry due to the naturally low permeability of shale formations and thus low productivity of ...Development of unconventional tight oil and gas reservoirs such as shale pays presents a huge challenge to the petroleum industry due to the naturally low permeability of shale formations and thus low productivity of oil and gas wells.Shale formations are also vulnerable to the contamination of the water in the drilling and completion fluids,which further reduces reservoir permeability.Although gas-drilling(drilling with gas)has been used to address the issue,several problems such as formation water influx,wellbore collapse,excessive gas volume requirement and hole cleaning in horizontal drilling,still hinder its application.A new technique called gas-lift drilling has recently been proposed to solve these problems,but the optimal design of drilling operation requires a thorough investigation of fluid flow field below the asymmetric drill bits for evaluating the fluid power needed to clean the bottom hole.Such an investigation is conducted in this work based on the Finite Element Method(FEM)implemented in an open source computational framework,FEniCS.Pressure and flow velocity fields were computed for three designs of drill bit face characterized by radial bit blades and one eccentric orifice of discharge.One of the designs is found superior over the other two because it generates relatively uniform flow velocities between blades and provides a balanced fluid power needed to clean all the bit teeth on each bit blade.To quantify the capability of borehole cleanup presented by three drill bit designs,the energy per unit volume is calculated in each region of drill bit and compared with the required value suggested by the literature.In addition,the developed FEM model under FEniCS framework provides engineers an accurate tool for optimizing drill bit design for efficiently gas-lift drilling unconventional tight oil and gas reservoirs.展开更多
In order to satisfy operating requirements for constant core drilling technology in reverse circulation with hollow-through DTH,the power unit of G-3 engineering driller was ameliorated. The new one with dual channel ...In order to satisfy operating requirements for constant core drilling technology in reverse circulation with hollow-through DTH,the power unit of G-3 engineering driller was ameliorated. The new one with dual channel drive shaft, achieved the perfect assemble with transmission structure of the original power unit. It could interconvert according to need by using two sets of drive shafts with direct and reverse circulation. The repacked G-3 engineering driller carried on experiment in the field test in Luanchuan molybdenum mine of Henan, whose effect was very good.展开更多
基金the National Key Research and Development Program of China(No.2018YFC1505303).
文摘Casing-while-drilling(CWD)with down the hole(DTH)hammer drilling technology has been widely used in unconsolidated formations,due to its advantages in protecting the borehole wall,excellent rock cuttings capacity,and fast penetration rate in hard rock.As an important component of the CWD system,the structure of the retractable drill bit needs not only to ensure to form stronger reverse circulation,but also to be expandable or retractable as needed,otherwise the drill bit cannot be lift and put down smoothly in the casing,and may lead to drilling accidents.This paper developed a new type of reverse circulation DTH hammer drill bit used for CWD drilling technology.The retractable performance of this type of drill bit is studied using ADAMS software.The results show that it is smoothly expandable and retractable as designed under the conditions of the weight of the bit(WOB)of 0.5–2.0 t and the rotation speed of 30–60 r/min.To investigate the reverse circulation effect of the drill bit,Fluent software was used to simulate the flow characteristic inside it.The simulation results indicated that it can form strong reverse circulation,and the entrainment ratio h can reach 9.5%.
基金This research was supported by the Open Fund(PLN201704)of the China State Key Laboratory of Oil and Gas Reservoir Geology and Exploitation at the Southwest Petroleum University and the China National Natural Science Foundation Founding Nos.51874252,51534006 and 51674044.This research was also supported by the China Scholarship Council Founding No.201808510219.
文摘Development of unconventional tight oil and gas reservoirs such as shale pays presents a huge challenge to the petroleum industry due to the naturally low permeability of shale formations and thus low productivity of oil and gas wells.Shale formations are also vulnerable to the contamination of the water in the drilling and completion fluids,which further reduces reservoir permeability.Although gas-drilling(drilling with gas)has been used to address the issue,several problems such as formation water influx,wellbore collapse,excessive gas volume requirement and hole cleaning in horizontal drilling,still hinder its application.A new technique called gas-lift drilling has recently been proposed to solve these problems,but the optimal design of drilling operation requires a thorough investigation of fluid flow field below the asymmetric drill bits for evaluating the fluid power needed to clean the bottom hole.Such an investigation is conducted in this work based on the Finite Element Method(FEM)implemented in an open source computational framework,FEniCS.Pressure and flow velocity fields were computed for three designs of drill bit face characterized by radial bit blades and one eccentric orifice of discharge.One of the designs is found superior over the other two because it generates relatively uniform flow velocities between blades and provides a balanced fluid power needed to clean all the bit teeth on each bit blade.To quantify the capability of borehole cleanup presented by three drill bit designs,the energy per unit volume is calculated in each region of drill bit and compared with the required value suggested by the literature.In addition,the developed FEM model under FEniCS framework provides engineers an accurate tool for optimizing drill bit design for efficiently gas-lift drilling unconventional tight oil and gas reservoirs.
基金Project of Science & Technology Development Guidance of Jilin Province (No.200405033)
文摘In order to satisfy operating requirements for constant core drilling technology in reverse circulation with hollow-through DTH,the power unit of G-3 engineering driller was ameliorated. The new one with dual channel drive shaft, achieved the perfect assemble with transmission structure of the original power unit. It could interconvert according to need by using two sets of drive shafts with direct and reverse circulation. The repacked G-3 engineering driller carried on experiment in the field test in Luanchuan molybdenum mine of Henan, whose effect was very good.