期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
Predicting Purchasing Behavior on E-Commerce Platforms: A Regression Model Approach for Understanding User Features that Lead to Purchasing
1
作者 Abraham Jallah Balyemah Sonkarlay J. Y. Weamie +2 位作者 Jiang Bin Karmue Vasco Jarnda Felix Jwakdak Joshua 《International Journal of Communications, Network and System Sciences》 2024年第6期81-103,共23页
This research introduces a novel approach to improve and optimize the predictive capacity of consumer purchase behaviors on e-commerce platforms. This study presented an introduction to the fundamental concepts of the... This research introduces a novel approach to improve and optimize the predictive capacity of consumer purchase behaviors on e-commerce platforms. This study presented an introduction to the fundamental concepts of the logistic regression algorithm. In addition, it analyzed user data obtained from an e-commerce platform. The original data were preprocessed, and a consumer purchase prediction model was developed for the e-commerce platform using the logistic regression method. The comparison study used the classic random forest approach, further enhanced by including the K-fold cross-validation method. Evaluation of the accuracy of the model’s classification was conducted using performance indicators that included the accuracy rate, the precision rate, the recall rate, and the F1 score. A visual examination determined the significance of the findings. The findings suggest that employing the logistic regression algorithm to forecast customer purchase behaviors on e-commerce platforms can improve the efficacy of the approach and yield more accurate predictions. This study serves as a valuable resource for improving the precision of forecasting customers’ purchase behaviors on e-commerce platforms. It has significant practical implications for optimizing the operational efficiency of e-commerce platforms. 展开更多
关键词 E-Commerce Platform Purchasing behavior prediction Logistic Regression Algorithm
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部