A new design scheme of direct adaptive fuzzy controller for a class of perturbed pure-feedback nonlinear systems is proposed. The design is based on backstepping and the approximation capability of the first type fuzz...A new design scheme of direct adaptive fuzzy controller for a class of perturbed pure-feedback nonlinear systems is proposed. The design is based on backstepping and the approximation capability of the first type fuzzy systems. A continuous robust term is adopted to minify the influence of modeling errors or disturbances. By introducing the modified integral-type Lyapunov function, the approach is able to avoid the requirement of the upper bound of the first time derivation of the high frequency control gain. Through theoretical analysis, the closed-loop control system is proven to be semi-globally uniformly ultimately bounded, with tracking error converging to a residual set.展开更多
In this paper, an adaptive neural networks(NNs)tracking controller is proposed for a class of single-input/singleoutput(SISO) non-affine pure-feedback non-linear systems with input saturation. In the proposed approach...In this paper, an adaptive neural networks(NNs)tracking controller is proposed for a class of single-input/singleoutput(SISO) non-affine pure-feedback non-linear systems with input saturation. In the proposed approach, the original input saturated nonlinear system is augmented by a low pass filter.Then, new system states are introduced to implement states transformation of the augmented model. The resulting new model in affine Brunovsky form permits direct and simpler controller design by avoiding back-stepping technique and its complexity growing as done in existing methods in the literature.In controller design of the proposed approach, a state observer,based on the strictly positive real(SPR) theory, is introduced and designed to estimate the new system states, and only two neural networks are used to approximate the uncertain nonlinearities and compensate for the saturation nonlinearity of actuator. The proposed approach can not only provide a simple and effective way for construction of the controller in adaptive neural networks control of non-affine systems with input saturation, but also guarantee the tracking performance and the boundedness of all the signals in the closed-loop system. The stability of the control system is investigated by using the Lyapunov theory. Simulation examples are presented to show the effectiveness of the proposed controller.展开更多
Adaptive neural network (NN) dynamic surface control (DSC) is developed for a class of non-affine pure-feedback systems with unknown time-delay. The problems of "explosion of complexity" and circular constructio...Adaptive neural network (NN) dynamic surface control (DSC) is developed for a class of non-affine pure-feedback systems with unknown time-delay. The problems of "explosion of complexity" and circular construction of the practical controller in the traditional backstepping algorithm are avoided by using this controller design method. For removing the requirements on the sign of the derivative of function f~, Nussbaum control gain technique is used in control design procedure. The effects of unknown time-delays are eliminated by using appropriate Lyapunov-Krasovskii functionals. Proposed control scheme guarantees that all the signals in the closed-loop system are semi-globally uniformly ultimately bounded. Two simulation examples are presented to demonstrate the method.展开更多
This paper addresses the problem of adaptive neural control for a class of uncertain pure-feedback nonlinear systems with multiple unknown state time-varying delays and unknown dead-zone. Based on a novel combination ...This paper addresses the problem of adaptive neural control for a class of uncertain pure-feedback nonlinear systems with multiple unknown state time-varying delays and unknown dead-zone. Based on a novel combination of the Razumikhin functional method, the backstepping technique and the neural network parameterization, an adaptive neural control scheme is developed for such systems. All closed-loop signals are shown to be semiglobally uniformly ultimately bounded, and the tracking error remains in a small neighborhood of the origin. Finally, a simulation example is given to demonstrate the effectiveness of the proposed control schemes.展开更多
基金This work was supported by the National Natural Science Foundation of China (No. 60074013 & 10371106)the Foundation of the Education bureau of Jiangsu Province (No. KK0310067)the Foundation of Information Science Subject Group of Yangzhou University
文摘A new design scheme of direct adaptive fuzzy controller for a class of perturbed pure-feedback nonlinear systems is proposed. The design is based on backstepping and the approximation capability of the first type fuzzy systems. A continuous robust term is adopted to minify the influence of modeling errors or disturbances. By introducing the modified integral-type Lyapunov function, the approach is able to avoid the requirement of the upper bound of the first time derivation of the high frequency control gain. Through theoretical analysis, the closed-loop control system is proven to be semi-globally uniformly ultimately bounded, with tracking error converging to a residual set.
文摘In this paper, an adaptive neural networks(NNs)tracking controller is proposed for a class of single-input/singleoutput(SISO) non-affine pure-feedback non-linear systems with input saturation. In the proposed approach, the original input saturated nonlinear system is augmented by a low pass filter.Then, new system states are introduced to implement states transformation of the augmented model. The resulting new model in affine Brunovsky form permits direct and simpler controller design by avoiding back-stepping technique and its complexity growing as done in existing methods in the literature.In controller design of the proposed approach, a state observer,based on the strictly positive real(SPR) theory, is introduced and designed to estimate the new system states, and only two neural networks are used to approximate the uncertain nonlinearities and compensate for the saturation nonlinearity of actuator. The proposed approach can not only provide a simple and effective way for construction of the controller in adaptive neural networks control of non-affine systems with input saturation, but also guarantee the tracking performance and the boundedness of all the signals in the closed-loop system. The stability of the control system is investigated by using the Lyapunov theory. Simulation examples are presented to show the effectiveness of the proposed controller.
基金partially supported by the Key Program of Henan Provincial Department of Education(No.13A470254)National Natural Science Foundation of China(Nos.61273137 and 51375145)+1 种基金the Science and Technology Innovative Foundation for Distinguished Young Scholar of Henan Province(No.144100510004)the Science and Technology Programme Foundation for the Innovative Talents of Henan Province University(No.13HASTIT038)
文摘Adaptive neural network (NN) dynamic surface control (DSC) is developed for a class of non-affine pure-feedback systems with unknown time-delay. The problems of "explosion of complexity" and circular construction of the practical controller in the traditional backstepping algorithm are avoided by using this controller design method. For removing the requirements on the sign of the derivative of function f~, Nussbaum control gain technique is used in control design procedure. The effects of unknown time-delays are eliminated by using appropriate Lyapunov-Krasovskii functionals. Proposed control scheme guarantees that all the signals in the closed-loop system are semi-globally uniformly ultimately bounded. Two simulation examples are presented to demonstrate the method.
基金supported by the National Natural Science Foundation of China (No. 60974066)the Natural Science Foundation of Shanghai (Nos.12ZR1408200, 11ZR1409800)the Fundamental Research Funds for the Central Universities
文摘This paper addresses the problem of adaptive neural control for a class of uncertain pure-feedback nonlinear systems with multiple unknown state time-varying delays and unknown dead-zone. Based on a novel combination of the Razumikhin functional method, the backstepping technique and the neural network parameterization, an adaptive neural control scheme is developed for such systems. All closed-loop signals are shown to be semiglobally uniformly ultimately bounded, and the tracking error remains in a small neighborhood of the origin. Finally, a simulation example is given to demonstrate the effectiveness of the proposed control schemes.