It was shown by TEM and X-ray analysis that there are four types of grains of the main Ni3Al phase in the structure of the intermetallic obtained by the self-propagation high temperature method (SHS). Every type of gr...It was shown by TEM and X-ray analysis that there are four types of grains of the main Ni3Al phase in the structure of the intermetallic obtained by the self-propagation high temperature method (SHS). Every type of grains has its own domain and dislocation structure. There are mono- and polydomains with and without dislocations. The grains of the main phase of monoand polydomains without dislocations and polydomains with dislocations were formed by diffusion in the solid phase. In these conditions NiAl3 phase is located on the grain boundary of the main phase. The Ni2Al3 phase is located at the triple joints of the main phase.展开更多
The Ni_3B phase was formed when boron (0.5 at. pct B) was added to the intermetallic of sto- ichiometric and off-stoichiometric (Ni-24 at. pct Al) compounds. In the alloy of stoichiometric composition the particles o...The Ni_3B phase was formed when boron (0.5 at. pct B) was added to the intermetallic of sto- ichiometric and off-stoichiometric (Ni-24 at. pct Al) compounds. In the alloy of stoichiometric composition the particles of Ni_3B phase has the size around 0.1μm and is located on the grain boundary of the main phase. The decreasing of concentrations of Al in the ofF-stoichiometric alloy leads to increase in the degree of the long-range order parameter, increasing the concen- trations of boron in the solid solution and decreasing its localization on the grain boundary. Microalloying of boron leads to increasing in the fraction of grain monodomains with disloca- tions up to 0.7 in the alloy of the off-stoichiometric composition and up to 1 in the alloy of the stoichiometric composition. It was established the correlation between the degree of the concentration inhomogeneity, average density of the dislocations and the average long range-order parameter.展开更多
The using of the iron to extract reduced iron with T Fe ≥ 69.5% Al 2O 3+SiO 2<0.3% was studied. Preparation of reduced iron powder in this experimental research can produce ultra pure magnetite concentrate...The using of the iron to extract reduced iron with T Fe ≥ 69.5% Al 2O 3+SiO 2<0.3% was studied. Preparation of reduced iron powder in this experimental research can produce ultra pure magnetite concentrate. The quality of the final product reaches the product standard of SC 100.26 and NC 100.24.展开更多
文摘It was shown by TEM and X-ray analysis that there are four types of grains of the main Ni3Al phase in the structure of the intermetallic obtained by the self-propagation high temperature method (SHS). Every type of grains has its own domain and dislocation structure. There are mono- and polydomains with and without dislocations. The grains of the main phase of monoand polydomains without dislocations and polydomains with dislocations were formed by diffusion in the solid phase. In these conditions NiAl3 phase is located on the grain boundary of the main phase. The Ni2Al3 phase is located at the triple joints of the main phase.
文摘The Ni_3B phase was formed when boron (0.5 at. pct B) was added to the intermetallic of sto- ichiometric and off-stoichiometric (Ni-24 at. pct Al) compounds. In the alloy of stoichiometric composition the particles of Ni_3B phase has the size around 0.1μm and is located on the grain boundary of the main phase. The decreasing of concentrations of Al in the ofF-stoichiometric alloy leads to increase in the degree of the long-range order parameter, increasing the concen- trations of boron in the solid solution and decreasing its localization on the grain boundary. Microalloying of boron leads to increasing in the fraction of grain monodomains with disloca- tions up to 0.7 in the alloy of the off-stoichiometric composition and up to 1 in the alloy of the stoichiometric composition. It was established the correlation between the degree of the concentration inhomogeneity, average density of the dislocations and the average long range-order parameter.
文摘The using of the iron to extract reduced iron with T Fe ≥ 69.5% Al 2O 3+SiO 2<0.3% was studied. Preparation of reduced iron powder in this experimental research can produce ultra pure magnetite concentrate. The quality of the final product reaches the product standard of SC 100.26 and NC 100.24.
基金Project(2020YFC1909800) supported by the National Key R&D program of ChinaProject(1053320210076) supported by the Fundamental Research Funds for the Central Universities,ChinaProject supported by the State Key Laboratory of Powder Metallurgy,China。
文摘在本研究中,以铁品位为68.38%、硅含量为2.33%的优质磁铁精矿为原料通过反浮选获得了铁品位为72.12%、硅含量为0.09%的超纯磁铁精矿。以超纯磁铁精矿为原料,在1075℃下煤基还原18 h、850℃下氢气还原50 min制备了铁品位为99.06%的高纯还原铁粉。高纯还原铁粉的松装密度、流动性和压缩性分别为2.34 g/cm^(3),9.01 s/(50 g)和6.55 g/cm^(3),达到了粉末冶金用铁粉企业标准(MHF/QB-2016)中MHF80·235(优等)级。用高纯还原铁粉通过共沉淀法制备磷酸铁锂,其首次充电比容量达168.20 m A·h/g。铁鳞经过1075℃煤基还原36 h、14 m T磁选、850℃氢气还原60 min得到铁品位为98.47%的二次还原铁粉,其松装密度、流动性和压缩性分别为2.30 g/cm^(3),10.39 s/(50 g)和6.41 g/cm^(3)。与铁鳞相比,超纯磁铁精矿不仅可省去赫格纳斯工艺中的磁选环节,而且其煤基还原和氢气还原环节所需的时间更短,得到的还原铁粉铁品位更高、工艺性能更佳。本文提出了还原铁粉工艺性能的改善机理:还原铁粉的粗颗粒占比和铁品位的提高可以明显改善其松装密度和压缩性,粗颗粒占比的增加也会改善还原铁粉的流动性。