Volatile components of Fuzhou Yulu, a Chinese fish sauce, were analyzed by gas chromatography-mass spectrometry (GC-MS), and two pretreatment methods, i.e., purge and trap (P&T) GC-MS and ethyl acetate extraction...Volatile components of Fuzhou Yulu, a Chinese fish sauce, were analyzed by gas chromatography-mass spectrometry (GC-MS), and two pretreatment methods, i.e., purge and trap (P&T) GC-MS and ethyl acetate extraction followed by GC-MS, were compared. P&T-GC-MS method determined 12 components, including sulfur-containing constituents (such as dimethyl disulfide), nitrogen-containing constituents (such as pyrazine derivatives), aldehydes and ketones. Ethyl acetate extraction fol- lowed by GC-MS method detected 10 components, which were mainly volatile organic acids (such as benzenepropanoic acid) and esters. Neither of the two methods detected alcohols or trimethylamine. This study offers an important reference to determine volatile flavor components of traditional fish sauce through modem analysis methods.展开更多
Recent advancements in person-portable instrumentation have resulted in the potential to provide contemporaneous results through rapid in-field analyses.These technologies can be utilised in emergency response scenari...Recent advancements in person-portable instrumentation have resulted in the potential to provide contemporaneous results through rapid in-field analyses.These technologies can be utilised in emergency response scenarios to aid first responders in appropriate site risk assessment and management.Large metropolitan fires can pose great risk to human and environmental health due to the rapid release of hazardous compounds into the atmosphere.Understanding the release of these hazardous organics is critical in understanding their associated risks.Person-portable gas chromatography-mass spectrometry(GC-MS)was evaluated for its potential to provide rapid on-site analysis for real-time monitoring of hazardous organic compounds at fire scenes.Air sampling and analysis methods were developed for scenes of this nature.Controlled field testing demonstrated that the portable GC-MS was able to provide preliminary analytical results on the volatile organic compounds present in air samples collected from both active and extinguished fires.In-field results were confirmed using conventional laboratory-based air sampling and analysis procedures.The deployment of portable instrumentation could provide first responders with a rapid on-site assessment tool for the appropriate management of scenes,thereby ensuring environmental and human health is proactively protected and scientifically informed decisions are made for the provision of timely advice to stakeholders.展开更多
基金supported by the Science and Technology Bureau of FujianProvince, China (No. B50701)the Foundation for Young Pro-fessors of Jimei University, China (No. C19005)
文摘Volatile components of Fuzhou Yulu, a Chinese fish sauce, were analyzed by gas chromatography-mass spectrometry (GC-MS), and two pretreatment methods, i.e., purge and trap (P&T) GC-MS and ethyl acetate extraction followed by GC-MS, were compared. P&T-GC-MS method determined 12 components, including sulfur-containing constituents (such as dimethyl disulfide), nitrogen-containing constituents (such as pyrazine derivatives), aldehydes and ketones. Ethyl acetate extraction fol- lowed by GC-MS method detected 10 components, which were mainly volatile organic acids (such as benzenepropanoic acid) and esters. Neither of the two methods detected alcohols or trimethylamine. This study offers an important reference to determine volatile flavor components of traditional fish sauce through modem analysis methods.
基金This project has been assisted by the New South Wales Government through its Environmental Trust[grant number 2015/RD/0156].
文摘Recent advancements in person-portable instrumentation have resulted in the potential to provide contemporaneous results through rapid in-field analyses.These technologies can be utilised in emergency response scenarios to aid first responders in appropriate site risk assessment and management.Large metropolitan fires can pose great risk to human and environmental health due to the rapid release of hazardous compounds into the atmosphere.Understanding the release of these hazardous organics is critical in understanding their associated risks.Person-portable gas chromatography-mass spectrometry(GC-MS)was evaluated for its potential to provide rapid on-site analysis for real-time monitoring of hazardous organic compounds at fire scenes.Air sampling and analysis methods were developed for scenes of this nature.Controlled field testing demonstrated that the portable GC-MS was able to provide preliminary analytical results on the volatile organic compounds present in air samples collected from both active and extinguished fires.In-field results were confirmed using conventional laboratory-based air sampling and analysis procedures.The deployment of portable instrumentation could provide first responders with a rapid on-site assessment tool for the appropriate management of scenes,thereby ensuring environmental and human health is proactively protected and scientifically informed decisions are made for the provision of timely advice to stakeholders.