A transient numerical model was applied to simulating the axial-directional crystallization purification(ADCP) process of gallium(Ga) raw material at different coolant temperatures(Tc), and the evolutions of melt/crys...A transient numerical model was applied to simulating the axial-directional crystallization purification(ADCP) process of gallium(Ga) raw material at different coolant temperatures(Tc), and the evolutions of melt/crystal(m/c) interface shape, temperature distribution and thermal stresses were simulated and analyzed. The results showed that the m/c interface shape, temperature distribution, and thermal stress in the Ga material were determined by the Tc in the crystallizer during the ADCP process. The temperature gradient and thermal stress in the grown Ga crystal increased with decreasing Tc. At Tc=15 ℃, the m/c interface shape was flat, and the temperature gradient was ideal. Therefore, the Ga materials with lower thermal stresses and suitable m/c interface shape, and an ideal efficiency of impurity removal were obtained. The purity of Ga reached 6 N standard by using ADCP process repeated 6 times at Tc of 15 ℃. The results of the simulation showed good agreement with the experimental results.展开更多
Eukaryotic membrane proteins, many of which are key players in various biological processes, constitute more than half of the drug targets and represent important candidates for structural studies. In contrast to thei...Eukaryotic membrane proteins, many of which are key players in various biological processes, constitute more than half of the drug targets and represent important candidates for structural studies. In contrast to their physiological significance, only very limited number of eukaryoUc membrane protein structures have been obtained due to the technical challenges in the genera- tion of recombinant proteins. In this review, we examine the major recombinant expression systems for eukaryotic membrane proteins and compare their relative advantages and disadvantages. We also attempted to summarize the recent technical strategies in the advancement of eukaryotic membrane protein purification and crystallization.展开更多
基金Project(51465014)supported by the National Natural Science Foundation of ChinaProject(Guike AA17204021-7)supported by the Innovation Driven Development Special Foundation of Guangxi,China。
文摘A transient numerical model was applied to simulating the axial-directional crystallization purification(ADCP) process of gallium(Ga) raw material at different coolant temperatures(Tc), and the evolutions of melt/crystal(m/c) interface shape, temperature distribution and thermal stresses were simulated and analyzed. The results showed that the m/c interface shape, temperature distribution, and thermal stress in the Ga material were determined by the Tc in the crystallizer during the ADCP process. The temperature gradient and thermal stress in the grown Ga crystal increased with decreasing Tc. At Tc=15 ℃, the m/c interface shape was flat, and the temperature gradient was ideal. Therefore, the Ga materials with lower thermal stresses and suitable m/c interface shape, and an ideal efficiency of impurity removal were obtained. The purity of Ga reached 6 N standard by using ADCP process repeated 6 times at Tc of 15 ℃. The results of the simulation showed good agreement with the experimental results.
基金ACKNOWLEDGEMENTS We apologize to colleagues whose work could not be cited due to the scope of this review. We would like to thank members in Yan laboratory for discussions. We thank Brendan Lehnert, Xinlei Sheng, Quanxiu Li, Dan Ma and Xinhui Zhou for critical reading. This work was supported by funds from the National Basic Research Program (973 Program) (No. 2011CB910501), the National Natural Science Foundation of China (Grant Nos. 31321062-20131319400, 31125009, and 91017011 ), and funds from Tsinghua-Peking Center for Life Sciences. The research of N.Y. was supported in part by an International Early Career Scientist grant from the Howard Hughes Medical Institute.
文摘Eukaryotic membrane proteins, many of which are key players in various biological processes, constitute more than half of the drug targets and represent important candidates for structural studies. In contrast to their physiological significance, only very limited number of eukaryoUc membrane protein structures have been obtained due to the technical challenges in the genera- tion of recombinant proteins. In this review, we examine the major recombinant expression systems for eukaryotic membrane proteins and compare their relative advantages and disadvantages. We also attempted to summarize the recent technical strategies in the advancement of eukaryotic membrane protein purification and crystallization.