期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
Mg^(2+) improves biomass production from soybean wastewater using purple non-sulfur bacteria 被引量:4
1
作者 Pan Wu Guangming Zhang Jianzheng Li 《Journal of Environmental Sciences》 SCIE EI CAS CSCD 2015年第2期43-46,共4页
Soybean wastewater was used to generate biomass resource by use of purple non-sulfur bacteria(PNSB). This study investigated the enhancement of PNSB cell accumulation in wastewater by Mg2+under the light-anaerobic ... Soybean wastewater was used to generate biomass resource by use of purple non-sulfur bacteria(PNSB). This study investigated the enhancement of PNSB cell accumulation in wastewater by Mg2+under the light-anaerobic condition. Results showed that with the optimal Mg2+dosage of 10 mg/L, biomass production was improved by 70% to 3630 mg/L,and biomass yield also was improved by 60%. Chemical Oxygen Demand(COD) removal reached above 86% and hydraulic retention time was shortened from 96 to 72 hr. The mechanism analysis indicated that Mg2+could promote the content of bacteriochlorophyll in photosynthesis because Mg2+is the bacteriochlorophyll active center, and thus improved adenosine triphosphate(ATP) production. An increase of ATP production enhanced the conversion of organic matter in wastewater into PNSB cell materials(biomass yield) and COD removal, leading to more biomass production. With 10 mg/L Mg2+, bacteriochlorophyll content and ATP production were improved by 60% and 33% respectively. 展开更多
关键词 purple non-sulfur bacteria Mg2+ Biomass resource Soybean wastewater PHOTOSYNTHESIS
原文传递
In vivo polydopamine coating of Rhodobacter sphaeroides for enhanced electron transfer
2
作者 Rossella Labarile Danilo Vona +7 位作者 Maria Varsalona Matteo Grattieri Melania Reggente Roberto Comparelli Gianluca M.Farinola Fabian Fischer Ardemis A.Boghossian Massimo Trotta 《Nano Research》 SCIE EI CSCD 2024年第2期875-881,共7页
Recent advances in coupling light-harvesting microorganisms with electronic components have led to a new generation of biohybrid devices based on microbial photocatalysts.These devices are limited by the poorly conduc... Recent advances in coupling light-harvesting microorganisms with electronic components have led to a new generation of biohybrid devices based on microbial photocatalysts.These devices are limited by the poorly conductive interface between phototrophs and synthetic materials that inhibit charge transfer.This study focuses on overcoming this bottleneck through the metabolically-driven encapsulation of photosynthetic cells with a bio-inspired conductive polymer.Cells of the purple non sulfur bacterium Rhodobacter sphaeroides were coated with a polydopamine(PDA)nanoparticle layer via the self-polymerization of dopamine under anaerobic conditions.The treated cells show preserved light absorption of the photosynthetic pigments in the presence of dopamine concentrations ranging between 0.05–3.5 mM.The thickness and nanoparticle formation of the membrane-associated PDA matrix were further shown to vary with the dopamine concentrations in this range.Compared to uncoated cells,the encapsulated cells show up to a 20-fold enhancement in transient photocurrent measurements under mediatorless conditions.The biologically synthesized PDA can thus act as a matrix for electronically coupling the light-harvesting metabolisms of cells with conductive surfaces. 展开更多
关键词 BIOELECTRONICS photosynthetic bacteria purple bacteria electron transfer POLYDOPAMINE biophotovoltaics
原文传递
Treatment of soybean wastewater by a wild strain Rhodobacter sphaeroides and to produce protein under natural conditions 被引量:21
3
作者 Junguo HE Guangming ZHANG Haifeng LU 《Frontiers of Environmental Science & Engineering》 SCIE EI CSCD 2010年第3期334-339,共6页
The conventional treatment method of soybean wastewater is expensive and generates waste sludge that requires further handling.Purple nonsulfur bacteria(PNSB)wastewater treatment is a clean technology and can generate... The conventional treatment method of soybean wastewater is expensive and generates waste sludge that requires further handling.Purple nonsulfur bacteria(PNSB)wastewater treatment is a clean technology and can generate single cell protein while degrading pollutants.A wild strain of PNSB,Rhodobacter sphaeroides Z08,was isolated from local soil and was used to treat soybean wastewater.To develop a cost-effective process,the work was performed under natural conditions without artificial light,aeration,nutrients addition,or pH and temperature adjustment.The results showed that the wild strain Rhodobacter sphaeroides Z08 could grow well under natural conditions.The growth curve showed two quickgrowth periods and a turning point.The Z08 treatment of soybean wastewater was zero order reaction and COD reduction was 96%after 10 d.The major byproducts of the process were C2-C5 organic acids,predominantly butyric acid.No alcohol was found in the effluent.The initial COD/bacterial-mass ratio(F/M)had a significant effect on soybean wastewater treatment efficiency.When the initial F/M was lower than 10 mg-COD/mg-bacteria,a sufficient amount of time to achieve 90%of COD reduction was only three days.The Z08 biomass yield was 0.28 g·g^(–1),and the bacterial protein content was 52%. 展开更多
关键词 purple nonsulfur bacteria(PNSB) Rhodobacter sphaeroides Z08 soybean wastewater cost effective
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部