期刊文献+
共找到16篇文章
< 1 >
每页显示 20 50 100
Soil Aggregation and Its Relationship with Organic Carbon of Purple Soils in the Sichuan Basin,China 被引量:1
1
作者 WEI Chao-fu SHAO Jing-an +4 位作者 NI Jiu-pai GAO Ming XIE De-ti PAN Gen-xing Shuichi Hasegawa 《Agricultural Sciences in China》 CAS CSCD 2008年第8期987-998,共12页
The interaction of soil aggregate dynamics with soil organic carbon is complex with varied spatio-temporal processes in macro-and micro-aggregates. This paper is to determine the aggregation of soil aggregates in purp... The interaction of soil aggregate dynamics with soil organic carbon is complex with varied spatio-temporal processes in macro-and micro-aggregates. This paper is to determine the aggregation of soil aggregates in purple soils (Regosols in FAO Taxonomy or Entisols in USDA Taxonomy) for four types of land use, cropland [corn (Zea mays L.)], orchard (citrus), forestland (bamboo or cypress), and barren land (wild grass), and to explore their relationship with soil organic carbon in the Sichuan basin of southwestern China. Procedures and methods, including manual dry sieving procedure, Yoder's wet sieving procedure, pyrophosphates solution method, and Kachisky method, are used to acquire dry, wet, and chemically stable aggregates, and microaggregates. Light and heavy fractions of soil organic carbon were separated using 2.0 g·mL^-1 HgI2-KI mixed solution. The loosely, stably, and tightly combined organic carbon in heavy fraction were separated by extraction with 0.1 M NaOH and 0.1 M NaOH-0.1M Na4P2O7 mixed solution (pH 13). The results show that the contents of dry and wet macroaggregates 〉0.25 mm in diameter were 974.1 and 900.0 g·kg^-1 highest in red brown purple soils under forestland, while 889.6 and 350.6 g·kg^-1 lowest in dark purple soil and lowest in grey brown purple soils under cropland, respectively. The chemical stability of macroaggregates was lowest in grey brown purple soil with 8.47% under cropland, and highest in red brown purple soil with 69.34% under barren land. The content of microaggregates in dark purple soils was 587g·kg^-1 higher than brown purple soils, while 655g·kg^-1 in red brown purple soils was similar to grey brown purple soils (651g·kg^-1). Cropland conditions, only 38.4% of organic carbon was of the combined form, and 61.6% of that existed in light fraction. Forestland conditions, 90.7% of organic carbon in red brown purple soil was complexed with minerals as a form of humic substances. The contents and stability of wet aggregates 〉 0.25 mm, contents and stability of chemically stable aggregates 〉0.25 mm, contents of microaggregates 〉 0.01 mm, contents of aggregated primary particle (d〈0.01 mm) and degree of primary particles (d 〈0.01 mm) aggregation were closely related to the concentrations of total soil organic carbon, and loosely and tightly combined organic carbon in heavy fraction. Soil microaggregation could be associated with organic carbon concentration and its combined forms in heavy fraction. There was a direct relationship between microaggregation and macroaggregation of soil primary particles, because the contents of wet aggregates 〉 0.25 mm and its water stability of aggregates were highly correlated with the contents of aggregated primary particle (d 〈 0.01 mm) and the degree of primary particles (d 〈 0.01 mm) aggregation. 展开更多
关键词 aggregation of soil primary particle soil structure soil organic carbon aggregate size distribution complexingof organo-mineral purple soil
下载PDF
Estimating purple-soil moisture content using Vis-NIR spectroscopy 被引量:5
2
作者 GOU Yu WEI Jie +3 位作者 LI Jin-lin HAN Chen TU Qing-yan LIU Chun-hong 《Journal of Mountain Science》 SCIE CSCD 2020年第9期2214-2223,共10页
Soil moisture is essential for plant growth in terrestrial ecosystems.This study investigated the visible-near infrared(Vis-NIR)spectra of three subgroups of purple soils(calcareous,neutral,and acidic)from western Cho... Soil moisture is essential for plant growth in terrestrial ecosystems.This study investigated the visible-near infrared(Vis-NIR)spectra of three subgroups of purple soils(calcareous,neutral,and acidic)from western Chongqing,China,containing different water contents.The relationship between soil moisture and spectral reflectivity(R)was analyzed using four spectral transformations,and estimation models were established for estimating the soil moisture content(SMC)of purple soil based on stepwise multiple linear regression(SMLR)and partial least squares regression(PLSR).We found that soil spectra were similar for different moisture contents,with reflectivity decreasing with increasing moisture content and following the order neutral>calcareous>acidic purple soil(at constant moisture content).Three of the four spectral transformations can highlight spectral sensitivity to SMC and significantly improve the correlation between the reflectance spectra and SMC.SMLR and PLSRmethods provide similar prediction accuracy.The PLSR-based model using a first-order reflectivity differential(R?)is more effective for estimating the SMC,and gave coefficient of determination(v2),root mean square errors of validation(RMSEV),and ratio of performance to inter-quartile distance(RPIQ)values of 0.946,1.347,and 6.328,respectively,for the calcareous purple soil,and 0.944,1.818,and 6.569,respectively,for the acidic purple soil.For neutral purple soil,the best prediction was obtained using the SMLR method with R?transformation,yieldingv2,RMSEV and RPIQ values of 0.973,0.888 and 8.791,respectively.In general,PLSR is more suitable than SMLR for estimating the SMC of purple soil. 展开更多
关键词 purple soil Soil moisture Vis-NIR spectroscopy Stepwise multiple linear regression Partial least squares regression
下载PDF
Erosion and Sediment Production in Small Watershed in Purple Hilly Areas and Prevention Techniques 被引量:4
3
作者 Zhang Bao-hua, He Yu-rong, Zhou Hong-yi, Zhu BoInstitute of Mountain Hazards and Environment, Chinese Academy of Sciences, Chengdu 610041, Sichuan, China Department of Geography, Liaocheng University, Liaocheng 252059, Shandong, China 《Wuhan University Journal of Natural Sciences》 CAS 2003年第03B期1041-1046,共6页
Purple Soil distributes extensively and mainly in China. Because of abundant easily weatherable parent rocks/ materials and unstable soil structure, and also influenced by parent materials, usage systems, and slope gr... Purple Soil distributes extensively and mainly in China. Because of abundant easily weatherable parent rocks/ materials and unstable soil structure, and also influenced by parent materials, usage systems, and slope gradients, erosion and sediment production of purple soils are very severe with main fashions of water erosion and gravitational erosion. Basing on observed data in small watersheds, rainfall erosivity, vegetation coverage, previous soil water content, flow and relating factors such as climate, topograph of small watershed, land usage, and soil kinds are all the influence factors of erosion and erodibility of purple soil as well as sediment production and transport in small watershed of purple hilly areas. The effective technological countermeasures of ecosystem restoration, agricultural tillage for water conservation and erosion prevention, agriculture project, and soil changing for fertility and anti-erosion were provided. 展开更多
关键词 purple soil characteristics of erosion and sediment production) influence factors prevention techniques
下载PDF
Effect of Different Fertilizer Treatments on Quantity of Soil Microbes and Structure of Ammonium Oxidizing Bacterial Community in a Calcareous Purple Paddy Soil 被引量:3
4
作者 GU Yun-fu YUN Xiang +3 位作者 ZHANG Xiao-ping TU Shi-hua SUN Xi-fa Kristina Lindstrom 《Agricultural Sciences in China》 CAS CSCD 2008年第12期1481-1489,共9页
The quantity of soil microbes and the structure of ammonium oxidizing bacterial (AOB) community were analyzed using the dilution plate counting and most probable number method (MPN), and denaturing gradient gel el... The quantity of soil microbes and the structure of ammonium oxidizing bacterial (AOB) community were analyzed using the dilution plate counting and most probable number method (MPN), and denaturing gradient gel electrophoresis (DGGE), respectively. Fertilizer application tended to increase the number of soil microbes and alter the AOB community compared to the control with no fertilizer application (CK). Among the eight fertilizer treatments, soil samples from the treatments of mineral fertilizers (e.g., N, P, K) in combination with farmyard manure (M) had greater number.s of soil microbes and more complex structure of AOB community than those receiving mineral fertilizers alone. The principal component analyses (PCA) for ammonium oxidizing bacterial community structure showed that the eight fertilizer treatments could be divided into two PCA groups (PCA1 and PCA2). For the soil sampled after rice harvest, PCA1 included NP, NM, NPM and NPKM fertilizer treatments, while PCA2 was consisted of CK, N, M and NPK fertilizer treatments. For soil samples collected after wheat harvest, PCA1 was consisted of M, NM, NPM and NPKM fertilizer treatments, while PCA2 was composed of CK, N, NP and NPK fertilizer treatments. For a given rotation, the richness of AOB community in PCA1 was greater than that in PCA2. In addition, AOB community structure was more complex in the soil after rice harvest than that after wheat harvest. The results indicated that different fertilizer treatments resulted in substantial changes of soil microbe number and AOB community. Furthermore, mineral fertilizers (N, NP, NPK) combined with farmyard manure were effective for increasing the quantity of soil microbes, enriching AOB community, and improving the soil biofertility. 展开更多
关键词 long-term fertilization calcareous purple paddy soil DGGE soil microbes AOB community
下载PDF
Transport of phosphorus in runoff and sediment with surface runoff from bare purple soil during indoor simulated rainfall 被引量:2
5
作者 MA Xiao YANG Jie +3 位作者 ZHOU Xiang-jun WU Hong-tao XIONG Qiao LI Ye 《Journal of Mountain Science》 SCIE CSCD 2022年第8期2333-2345,共13页
Phosphorus(P)in surface runoff from purple soil is a critical element of agricultural nonpoint source pollution,leading to eutrophication of surface waters in the Three Gorges Reservoir Area(TGRA)of China.This work ai... Phosphorus(P)in surface runoff from purple soil is a critical element of agricultural nonpoint source pollution,leading to eutrophication of surface waters in the Three Gorges Reservoir Area(TGRA)of China.This work aimed to understand the processes and mechanisms of P losses from bare purple soil.Based on an indoor rainfall simulation experiment,we focused on the processes of surface runoff and P losses via different hydrological pathways.Experimental treatments included three simulated rainfall intensities,four slope gradients,and three fertilizer treatments.P loss from sediment was the main pathway in the purple soil,and bioavailable P was mainly transferred in dissolved P(DP)of runoff water.The P loss loads tend to grow with the increase of the slope until 25°for the maximum load of runoff water and 20°for the maximum load of sediment.Concentrations of DP in the surface runoff after fertilizer application can exceed the estimates of those required for accelerated eutrophication.Sediment P control might be an essential way for reducing P loss in purple soil for the local government and farmers of TGRA. 展开更多
关键词 Surface runoff Sediment yield Phosphorus loss purple soil Simulated rainfall
下载PDF
Soil carbon sequestration under long-term rice-based cropping systems of purple soil in Southwest China 被引量:9
6
作者 FAN Hong-zhu CHEN Qing-rui +4 位作者 QIN Yu-sheng CHEN Kun TU Shi-hua XU Ming-gang ZHANG Wen-ju 《Journal of Integrative Agriculture》 SCIE CAS CSCD 2015年第12期2417-2425,共9页
Carbon sequestration in agricultural soils is a complex process controlled by farming practices, climate and some other environment factors. Since purple soils are unique in China and used as the main cropland in Sich... Carbon sequestration in agricultural soils is a complex process controlled by farming practices, climate and some other environment factors. Since purple soils are unique in China and used as the main cropland in Sichuan Basin of China, it is of great importance to study and understand the impacts of different fertilizer amendments on soil organic carbon(SOC) changes with time. A research was carried out to investigate the relationship between soil carbon sequestration and organic carbon input as affected by different fertilizer treatments at two long-term rice-based cropping system experiments set up in early 1980 s. Each experiment consisted of six identical treatments, including(1) no fertilizer(CK),(2) nitrogen and phosphorus fertilizers(NP),(3) nitrogen, phosphorus and potassium fertilizers(NPK),(4) fresh pig manure(M),(5) nitrogen and phosphorus fertilizers plus manure(MNP), and(6) nitrogen, phosphorus and potassium fertilizers plus manure(MNPK). The results showed that annual harvestable carbon biomass was the highest in the treatment of MNPK, followed by MNP and NPK, then M and NP, and the lowest in CK. Most of fertilizer treatments resulted in a significant gain in SOC ranging from 6.48 to 2 9.13% compared with the CK, and raised soil carbon sequestration rate to 0.10–0.53 t ha–1 yr-1. Especially, addition of manure on the basis of mineral fertilizers was very conducive to SOC maintenance in this soil. SOC content and soil carbon sequestration rate under balanced fertilizer treatments(NPK and MNPK) in the calcareous purple soil(Suining) were higher than that in the acid purple soil(Leshan). But carbon conversion rate at Leshan was 11.00%, almost 1.5 times of that(7.80%) at Suining. Significant linear correlations between soil carbon sequestration and carbon input were observed at both sites, signifying that the purple soil was not carbon-saturated and still had considerable potential to se questrate more carbon. 展开更多
关键词 rice-based cropping systems long-term fertilization soil organic carbon purple soil
下载PDF
Rill flow velocity affected by the subsurface water flow depth of purple soil in Southwest China 被引量:1
7
作者 TAO Ting-ting CHEN Shi-qi CHEN Xiao-yan 《Journal of Mountain Science》 SCIE CSCD 2022年第3期704-714,共11页
Subsurface water flow above the weakly permeable soil layer commonly occurs on purple soil slopes.However,it remains difficult to quantify the effect of subsurface water flow on the surface flow velocity.Laboratory ex... Subsurface water flow above the weakly permeable soil layer commonly occurs on purple soil slopes.However,it remains difficult to quantify the effect of subsurface water flow on the surface flow velocity.Laboratory experiments were performed to measure the rill flow velocity on purple soil slopes containing a subsurface water flow layer with the electrolyte tracer method considering 3 subsurface water flow depths(SWFDs:5,10,and 15 cm),3 flow rates(FRs:2,4,and 8 L min^(-1)),and 4 slope gradients(SGs:5°,10°,15°,and 20°).As a result,the pulse boundary model fit the electrolyte transport processes very well under the different SWFDs.The measured rill flow velocities were 0.202 to 0.610 m s^(-1) under the various SWFDs.Stepwise regression results indicated a positive dependence of the flow velocity on the FR and SG but a negative dependence on the SWFD.The SWFD had notable effects on the rill flow velocity.Decreasing the SWFD from 15 to 5 cm increased the flow velocity.Moreover,the flow velocities under the 10-and 15-cm SWFDs were 89%and 86%,respectively,of that under the 5-cm SWFD.The flow velocity under the 5-,10-and 15-cm SWFDs was decreased to 89%,80%,and 77%,respectively,of that on saturated soil slopes.The results will enhance the understanding of rill flow hydrological processes under SWFD impact. 展开更多
关键词 Rill erosion Subsurface water flow Electrolyte tracer method Flow velocity purple soil
下载PDF
IMPACTS OF DIFFERENT TYPES OF LAND USE ON PROCESSES OF SOIL AND WATER LOSS OVER PURPLE SOIL SLOPELAND 被引量:1
8
作者 Cai Qiangguo \ Wu Shu′an Institute of Geography, CAS, Beijing 100101 People’s Republic of ChinaPeng Yexuan Experimental Station on Soil & Water Conservation, Zigui County, Hubei 443600 People’s Republic of China 《Journal of Geographical Sciences》 SCIE CSCD 1997年第1期71-84,共14页
Based on natural precipitation observations, impacts of different types of land use on processes of soil and water loss over purple soil related slopeland were studied by simulated rainfall experiments. Measurement da... Based on natural precipitation observations, impacts of different types of land use on processes of soil and water loss over purple soil related slopeland were studied by simulated rainfall experiments. Measurement data revealed that rainstorms and slope length are the essential factors accountable for soil and water loss on purple soil slopeland for intense rill erosion can be caused on 10 meter long purple soil slopes by high intensity rainfall. Under circumanstances of rainstorms, annual hedge plants grown on slopeland of 25 degrees can cause a reduction of runoff by 22 43 percent and that of erosion induced sand content by 94 98 percent. Stone bund horizontal terraces can lead to a runoff reduction by 62 67 percent in comparison with steep slopelands and that of erosion induced sediment by 97.8 99 percent. Soil and water loss can be substantially decreased on steep slopes by hedge plants with a cost of only 10 20 percent that of the stone bund horizontal terraces. Hence it is an effective way to control soil and water loss in terms of slopeland amelioration and utilization in the Three Gorges Reservoir Area. 展开更多
关键词 purple soil slopeland land use soil and water loss process.
下载PDF
Responses of Gardenia jasminoides Ellis Leaf Traits and Anatomical Structures to Drought Stress in Purple Soil 被引量:1
9
作者 Yan YANG Lei LI +3 位作者 Jie TANG Yuxi TANG Yongjin LI Mengrong LUO 《Agricultural Biotechnology》 CAS 2021年第5期93-97,共5页
[Objectives]This study was conducted to investigate the response of Gardenia to purple soil drought stress,hoping to provide a reference for the selection of plants for vegetation restoration in purple soil regions.[M... [Objectives]This study was conducted to investigate the response of Gardenia to purple soil drought stress,hoping to provide a reference for the selection of plants for vegetation restoration in purple soil regions.[Methods]The pot-weighing water control method was used to apply different degrees of drought stress to Gardenia seedlings in purple soil,and the effects of drought stress on the electrical conductivity,chlorophyll content,leaf morphology and structure of Gardenia leaves were explored.[Results]The leaf electrical conductivity increased with the increase of drought stress intensity,and the leaf electrical conductivity under severe drought stress increased by 59.93%compared with the control;the chlorophyll content of Gardenia showed a single-peak changing trend that increased and then decreased with the development of drought stress,and it was the highest in each stress stage under severe drought stress;the leaf thickness,palisade tissue thickness and sponge tissue thickness of Gardenia were reduced with the stress degree increasing,and showed the largest decreases under severe stress;the stomatal length,stomatal width and stomatal opening of Gardenia gradually decreased with the increase of stress,while the stomatal density gradually increased.[Conclusions]This study provides a technical and resource basis for vegetation restoration in purple soil. 展开更多
关键词 purple soil Drought stress Gardenia jasminoides Ellis Anatomical structure Leaf traits
下载PDF
Effect of nitrogen fertilizer on the uptake and utilization of potassium by various rice varieties in purple soil 被引量:1
10
《Chinese Rice Research Newsletter》 1999年第4期11-12,共2页
Nitrogen and potassium are important nutrientelements for rice.Besides supplied by the or- ganic manure,potassium nutrition of ricecomes dominantly from purple soils in Sichuanbasin.Potassium exists abundantly in mine... Nitrogen and potassium are important nutrientelements for rice.Besides supplied by the or- ganic manure,potassium nutrition of ricecomes dominantly from purple soils in Sichuanbasin.Potassium exists abundantly in mineralforms in the purple soils.Availability of soilpotassium for crop depends on the potassiumforms,the uptake ability of crops,and fertiliz-er practices.A pot culture experiment wasconducted to study the kinetics of potassiumuptake in the purple soil(total N 22.64g·kg,total K 24.36g·kg,available N 102.6mg·kg,available K 140.6mg·kg,acidsoluble K 936.0mg·kg,and pH 6.8).Ma-terials used were three Fhybrid rices,Eryou 展开更多
关键词 Effect of nitrogen fertilizer on the uptake and utilization of potassium by various rice varieties in purple soil
下载PDF
Multifractal characteristics and spatial variability of soil particle-size distribution in different land use patterns in a small catchment of the Three Gorges Reservoir Region,China 被引量:2
11
作者 CHEN Tai-li SHI Zhong-lin +5 位作者 WEN An-bang YAN Dong-chun GUO Jin CHEN Jia-cun LIU Yuan CHEN Rui-yin 《Journal of Mountain Science》 SCIE CSCD 2021年第1期111-125,共15页
Characterizing soil particle-size distribution is a key measure towards soil property.The purpose of this study was to evaluate the multifractal characteristics of soil particle-size distribution among different land-... Characterizing soil particle-size distribution is a key measure towards soil property.The purpose of this study was to evaluate the multifractal characteristics of soil particle-size distribution among different land-use from a purple soil catchment and to generalize the spatial variation trend of multifractal parameters across the catchment.A total of 84 soil samples were collected from four kinds of land use patterns(dry land,orchard,paddy,and forest)in an agricultural catchment in the Three Gorges Reservoir Region,China.The multifractal analysis method was applied to quantitatively characterize the soil particle size distribution.Six soil particle size distribution(PSD)multifractal parameters(D(0),D(1),D(2),(35)a(q),(35)f[a(q)],α(0))were computed.Additionally,a geostatistical analysis was employed to reveal the spatial differentiation and map the spatial distribution of these parameters.Evident multifractal characteristics were found.The trend of generalized dimension spectrum of four land use patterns was basically consistent with the range of 0.8 to 2.0.However,orchard showed the largest monotonic decline,while the forest demonstrated the smallest decrease.D(0)of the four land use patterns were ranked as:dry land<orchard<forest<paddy,the order of D(1)was:dry land<paddy<orchard<forest,D(2)presented a rand-size relationship as dry land<forest<paddy<orchard.Furthermore,all land-use patterns presented asΔf[α(q)]<0.The rand-size relationship ofα(0)was same as D(0).The best-fitting model for D(0),D(1),D(2)andΔf[α(q)]was spherical model,forΔα(q)was gaussian model,and forα(0)was exponential model with structure variance ratio was 1.03%,49.83%,0.84%,1.48%,22.20%and 10.60%,respectively.The results showed that soil particles of each land use pattern were distributed unevenly.The multifractal parameters under different land use have significant differences,except forΔα(q).Differences in the composition of soil particles lead to differences in the multifractal properties even though they belong to the same soil texture.Farming behavior may refine particles and enhance the heterogeneity of soil particle distribution.Our results provide an effective reference for quantifying the impact of human activities on soil system in the Three Gorges Reservoir region. 展开更多
关键词 Land use patterns purple soil Multifractal characteristics Particle size distribution GEOSTATISTICS Spatial variability
下载PDF
Effects of soil conservation practices on soil erosion and the size selectivity of eroded sediment on cultivated slopes 被引量:1
12
作者 XU Lu ZHANG Dan +3 位作者 PROSHAD Ram CHEN Yu-lan HUANG Tian-fang UGURLU Aysenur 《Journal of Mountain Science》 SCIE CSCD 2021年第5期1222-1234,共13页
Soil conservation practices can greatly affect the soil erosion process,but limited information is available about its influence on the particle size distribution(PSD)of eroded sediment,especially under natural rainfa... Soil conservation practices can greatly affect the soil erosion process,but limited information is available about its influence on the particle size distribution(PSD)of eroded sediment,especially under natural rainfall.In this study,the runoff,sediment yields,and effective/ultimate PSD were measured under two conventional tillage practices,downhill ridge tillage(DT)and plat tillage(PT)and three soil conservation practices,contour ridge tillage(CT),mulching with downhill ridge tillage(MDT),and mulching with contour ridge tillage(MCT)during 21 natural rainfall events in the lower Jinsha River.The results showed that(1)soil conservation practices had a significant effect on soil erosion.The conventional tillage of DT caused highest runoff depth(0.58 to 29.13 mm)and sediment yield(0.01 to 3.19 t hm^(-2)).Compared with DT,the annual runoff depths and sediment yields of CT,MDT and MCT decreased by 12.24%-49.75%and 40.79%-88.30%,respectively.(2)Soil conservation practices can reduce the decomposition of aggregates in sediments.The ratios of effective and ultimate particle size(E/U)of siltand sand-sized particles of DT and PT plots were close to 1,indicating that they were transported as primary particles,however,values lower/greater than 1 subject to CT,MDT and MCT plots indicated they were transported as aggregates.The ratios of E/U of claysized particles were all less than 1 independently of tillage practices.(3)The sediments of soil conservation practices were more selective than those of conventional tillage practices.For CT,MDT and MCT plots,the average enrichment ratios(ERs)of clay,silt and sand were 1.99,1.93 and 0.42,respectively,with enrichment of clay and silt and depletion of sand in sediments.However,the compositions of the eroded sediments of DT and PT plots were similar to that of the original soil.These findings support the use of both effective and ultimate particle size distributions for studying the size selectivity of eroded sediment,and provide a scientific basis for revealing the erosion mechanism in the purple soil area of China. 展开更多
关键词 Natural rainfall Runoff and sediment yield Soil particle size distribution Enrichment ratio purple soil
下载PDF
Analysis of Soil Anti-erosion Characteristics under Artificial Rainfall Conditions
13
作者 Yuanjing Zhang Pingcang Zhang +1 位作者 Yasong Li Chao Li 《Meteorological and Environmental Research》 CAS 2013年第11期55-57,共3页
[ Objective] The study aimed to discuss the anti-erosion characteristics of different soils under artificial rainfall conditions. [ Method] Through artificial rainfall experiments, the characteristics of surface runof... [ Objective] The study aimed to discuss the anti-erosion characteristics of different soils under artificial rainfall conditions. [ Method] Through artificial rainfall experiments, the characteristics of surface runoff and sediment yield of loess, black soil, purple soil and red soil wee cont- rastively studied under the same experimental conditions. [ Resultl Under the same conditions, red soil had the best anti-erosion ability, fallowed by purple soil, black soil and loess. In practice, soil and water conservation measures should be adopted according to erosion characters of different soils. [ Conclusion] The research could provide scientific references for the establishment of soil and water conservation measures in soil erosion ar- eas of China. 展开更多
关键词 Simulated rainfall Soil erosion LOESS Black soil purple soil Red soil
下载PDF
Determination of rill erodibility and critical shear stress of saturated purple soil slopes
14
作者 Dandan Li Xiaoyan Chen +2 位作者 Zhen Han Xiaojie Gu Yanhai Li 《International Soil and Water Conservation Research》 SCIE CSCD 2022年第1期38-45,共8页
The hydrological conditions near the soil surface influence the soil erosion process,as determined by the soil erodibility and critical shear stress.The soil erodibility and critical shear stress of saturated purple s... The hydrological conditions near the soil surface influence the soil erosion process,as determined by the soil erodibility and critical shear stress.The soil erodibility and critical shear stress of saturated purple soil slopes were computed and compared with those of unsaturated purple soil slopes.The detachment capacities computed through the numerical method(NM),modified numerical method(MNM)and analytical method(AM),from rill erosion experiments on saturated purple soil slopes at different flow rates(2,4,and 8 L min-1)and slope gradients(5,10,15,and 20°),were used to comparatively compute the soil erodibility and critical shear stress.The computed soil erodibilities and critical shear stresses were also compared with those of unsaturated purple soil slopes.At the different slope gradients ranging from 5°to 20°,there were no significant differences in the soil erodibilities of the saturated purple soil and also in those of the unsaturated purple soil.The critical shear stresses slightly varied with the slope gradients.The saturated purple soil was relatively significantly more susceptible to erosion.The NM overestimated the soil erodibility of both saturated and unsaturated soils by 31%and underestimated the critical shear stress.The MNM yielded the same soil erodibility and critical shear stress values as the AM.The results of this study supply parameters for modeling rill erosion of saturated purple soil slope. 展开更多
关键词 Critical shear stress ERODIBILITY Detachment capacity Rill erosion Saturated purple soil
原文传递
EFFECTS OF SUBSTITUTION OF MINERAL NITROGEN WITH ORGANIC AMENDMENTS ON NITROGEN LOSS FROM SLOPING CROPLAND OF PURPLE SOIL
15
作者 Bo ZHU Zhiyuan YAO +1 位作者 Dongni HU Hamidou BAH 《Frontiers of Agricultural Science and Engineering》 2022年第3期396-406,共11页
Nitrogen loss from purple soil can lead to large negative impacts to the environment considering the wide distribution of this soil type in the upper reaches of the Yangtze River.Therefore,nitrogen loss patterns from ... Nitrogen loss from purple soil can lead to large negative impacts to the environment considering the wide distribution of this soil type in the upper reaches of the Yangtze River.Therefore,nitrogen loss patterns from sloping cropland of purple soil in the Sichuan Basin with the following fertilization regimes were studied in a wheat-maize rotation system:100%organic fertilizer(OM),using pig manure to replace 30%of mineral N(OMNPK)and crop residue to replace 15%of the mineral N(CRNPK)plus standard mineral fertilization(NPK)and no fertilizer control.The cumulative hydrological N loss could be as high as 45 kg·ha^(−1) N.The interflow accounted for up to 90%of the total N loss followed by sediment and overland flow losses.The high N loss via interflow found in this study highlighting that sloping cropland of purple soil may be one of the hot spots of N leaching.Compared to the NPK regime,organic substitution regimes(i.e.,OM,OMNPK and CRNPK)decreased total hydrological N loss loadings by 30%−68%.In addition,they can maintain annual crop yields and decrease yield-scaled total hydrological N losses by 18%−71%.In conclusion,long-term substitution of mineral N with organic amendments can maintain high crop productivity and reduce environmental N loss loadings,and thereby recommended as good N management practices to minimize the risk of agricultural non-point source pollution in the purple soil region of China. 展开更多
关键词 improved fertilization regime INTERFLOW nitrogen forms nitrogen leaching purple soil sloping cropland
原文传递
Effects of land use patterns on soil aggregate stability in Sichuan Basin,China 被引量:9
16
作者 Zhen Zhang Chaofu Wei +2 位作者 Deti Xie Ming Gao Xibai Zeng 《Particuology》 SCIE EI CAS CSCD 2008年第3期157-166,共10页
Soil aggregate stability as a key indicator of soil structure, is a product of interactions between soil environment, management practices, and land use patterns. The objective of this study was to analyze the impact ... Soil aggregate stability as a key indicator of soil structure, is a product of interactions between soil environment, management practices, and land use patterns. The objective of this study was to analyze the impact of various land use patterns on soil aggregate stability in Sichuan Basin of southwestern China. The dry- and water-stable aggregate size distributions were determined by manual dry sieving procedure and Yoder's wet sieving procedure, respectively, while microaggregates and its mechanical and chemical stabilities by Kachisky's method, oscillator method, and citrate-dithionate (C-D) reagent method, separately. The results indicated that fractal dimension and surface fractal dimension were useful indicators to reflect soil aggregate distribution. Land use patterns have an obvious influence on soil aggregate stability. In the study area, water stability, mechanical stability, and chemical stability followed the sequence, Barren land 〉 forestland 〉 orchard 〉 cropland, and the original stability and collapse velocity were sensitive to soil properties and soil structure. The difference of aggregate stability under different land use patterns is mainly due to the intensity of human disturbance and cultivation. Improper land use patterns will lead to breakdown of unstable aggregates, producing finer and more-easily transportable particles and microaggregates. In the future, inappropriate cultivation and land use patterns should be changed to protect soil structure, to improve soil aggregate stability and soil fertility in Sichuan Basin. 展开更多
关键词 Aggregate size distribution Soil aggregate stability Fractal dimension Land use pattern purple soil Sichuan Basin China
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部