Xinjiang has effectively safeguarded the basic rights of people of all ethnic groups to work and employment,and made great strides in economic and social development,thus significantly improving people’s livelihoods.
One of the difficulties frequently encountered in water quality assessment is that there are many factors and they cannot be assessed according to one factor, all the effect factors associated with water quality must ...One of the difficulties frequently encountered in water quality assessment is that there are many factors and they cannot be assessed according to one factor, all the effect factors associated with water quality must be used. In order to overcome this issues the projection pursuit principle is introduced into water quality assessment, and projection pursuit cluster(PPC) model is developed in this study. The PPC model makes the transition from high dimension to one-dimension. In other words, based on the PPC model, multifactor problem can be converted to one factor problem. The application of PPC model can be divided into four parts: (1) to estimate projection index function Q(); (2) to find the right projection direction ; (3) to calculate projection characteristic value of the i th sample z-i, and (4) to draw comprehensive analysis on the basis of z-i. On the other hand, the empirical formula of cutoff radius R is developed, which is benefit for the model to be used in practice. Finally, a case study of water quality assessment is proposed in this paper. The results showed that the PPC model is reasonable, and it is more objective and less subjective in water quality assessment. It is a new method for multivariate problem comprehensive analysis.展开更多
The research shows that projection pursuit cluster (PPC) model is able to form a suitable index for overcom-ing the difficulties in comprehensive evaluation, which can be used to analyze complex multivariate prob-lems...The research shows that projection pursuit cluster (PPC) model is able to form a suitable index for overcom-ing the difficulties in comprehensive evaluation, which can be used to analyze complex multivariate prob-lems. The PPC model is widely used in multifactor cluster and evaluation analysis, but there are a few prob-lems needed to be solved in practice, such as cutoff radius parameter calibration. In this study, a new model-projection pursuit dynamic cluster (PPDC) model-based on projection pursuit principle is developed and used in water resources carrying capacity evaluation in China for the first time. In the PPDC model, there are two improvements compared with the PPC model, 1) a new projection index is constructed based on dynamic cluster principle, which avoids the problem of parameter calibration in the PPC model success-fully;2) the cluster results can be outputted directly according to the PPDC model, but the cluster results can be got based on the scatter points of projected characteristic values or the re-analysis for projected character-istic values in the PPC model. The results show that the PPDC model is a very effective and powerful tool in multifactor data exploratory analysis. It is a new method for water resources carrying capacity evaluation. The PPDC model and its application to water resources carrying capacity evaluation are introduced in detail in this paper.展开更多
A new technique of dimension reduction named projection pursuit is applied to model and evaluatewetland soil quality variations in the Sanjiang Plain, Helongjiang Province, China. By adopting the im-proved real-coded ...A new technique of dimension reduction named projection pursuit is applied to model and evaluatewetland soil quality variations in the Sanjiang Plain, Helongjiang Province, China. By adopting the im-proved real-coded accelerating genetic algorithm (RAGA), the projection direction is optimized and multi-dimensional indexes are converted into low-dimensional space. Classification of wetland soils and evaluationof wetland soil quality variations are realized by pursuing optimum projection direction and projection func-tion value. Therefore, by adopting this new method, any possible human interference can be avoided andsound results can be achieved in researching quality changes and classification of wetland soils.展开更多
To suppress noise amplitude modulation jamming in a single-antenna radar system, a new method based on weighted-matching pursuit (WMP) algorithm is proposed, which can achieve underdetermined blind sources separatio...To suppress noise amplitude modulation jamming in a single-antenna radar system, a new method based on weighted-matching pursuit (WMP) algorithm is proposed, which can achieve underdetermined blind sources separation of the jamming and the target echo from the jammed mixture in the single channel of the receiver. Firstly, the presented method utilizes a prior information about the differences between the jamming component and the radar transmitted signal to construct two signal-adapted sub-dictionaries and to determine the weights. Then the WMP algorithm is applied to remove the jamming component from the mixture. Experimental results verify the validity of the presented method. By comparison of the pulse compression performance, the simulation results shows that the presented method is superior to the method of frequency domain cancellation (FDC) when the jamming-to-signal ratio (JSR) is lower than 15 dB.展开更多
In the time-frequency analysis of seismic signals, the matching pursuit algorithm is an effective tool for non-stationary signals, and has high time-frequency resolution and a transient structure with local self-adapt...In the time-frequency analysis of seismic signals, the matching pursuit algorithm is an effective tool for non-stationary signals, and has high time-frequency resolution and a transient structure with local self-adaption. We expand the time-frequency dictionary library with Ricker, Morlet, and mixed phase seismic wavelets, to make the method more suitable for seismic signal time-frequency decomposition. In this paper, we demonstrated the algorithm theory using synthetic seismic data, and tested the method using synthetic data with 25% noise. We compared the matching pursuit results of the time-frequency dictionaries. The results indicated that the dictionary which matched the signal characteristics better would obtain better results, and can reflect the information of seismic data effectively.展开更多
A simple and effective greedy algorithm for image approximation is proposed. Based on the matching pursuit approach, it is characterized by a reduced computational complexity benefiting from two major modifications. F...A simple and effective greedy algorithm for image approximation is proposed. Based on the matching pursuit approach, it is characterized by a reduced computational complexity benefiting from two major modifications. First, it iteratively finds an approximation by selecting M atoms instead of one at a time. Second, the inner product computations are confined within only a fraction of dictionary atoms at each iteration. The modifications are implemented very efficiently due to the spatial incoherence of the dictionary. Experimental results show that compared with full search matching pursuit, the proposed algorithm achieves a speed-up gain of 14.4-36.7 times while maintaining the approximation quality.展开更多
Recovering the low-rank structure of data matrix from sparse errors arises in the principal component pursuit (PCP). This paper exploits the higher-order generalization of matrix recovery, named higher-order princip...Recovering the low-rank structure of data matrix from sparse errors arises in the principal component pursuit (PCP). This paper exploits the higher-order generalization of matrix recovery, named higher-order principal component pursuit (HOPCP), since it is critical in multi-way data analysis. Unlike the convexification (nuclear norm) for matrix rank function, the tensorial nuclear norm is stil an open problem. While existing preliminary works on the tensor completion field provide a viable way to indicate the low complexity estimate of tensor, therefore, the paper focuses on the low multi-linear rank tensor and adopt its convex relaxation to formulate the convex optimization model of HOPCP. The paper further propose two algorithms for HOPCP based on alternative minimization scheme: the augmented Lagrangian alternating direction method (ALADM) and its truncated higher-order singular value decomposition (ALADM-THOSVD) version. The former can obtain a high accuracy solution while the latter is more efficient to handle the computationally intractable problems. Experimental results on both synthetic data and real magnetic resonance imaging data show the applicability of our algorithms in high-dimensional tensor data processing.展开更多
生态翻译学以探索普适翻译规律为目标,将翻译活动定义为译者在翻译生态环境中对各相关元素的适应选择行为,为电影片名翻译提供了全新的理论视角与实践方法。本文以美国影片The Pursuit of Happyness片名汉译为例,从语言维、文化维、交...生态翻译学以探索普适翻译规律为目标,将翻译活动定义为译者在翻译生态环境中对各相关元素的适应选择行为,为电影片名翻译提供了全新的理论视角与实践方法。本文以美国影片The Pursuit of Happyness片名汉译为例,从语言维、文化维、交际维的三维适应性选择转换视角分析译者的整个翻译过程,借此管窥电影片名翻译的生态翻译学启示。展开更多
During the process of enterprises' strategy evaluation and selection, there are many evaluating indicators, and among them there are some potential correlations and conflicts. Thus it poses the problems to the decisi...During the process of enterprises' strategy evaluation and selection, there are many evaluating indicators, and among them there are some potential correlations and conflicts. Thus it poses the problems to the decision-makers how to conduct correct evaluation on a business and how to make strategy adjustment and selection according to the evaluation. Based on the qualitative and quantitative method, the paper introduces the Projection Pursuit Classification (PPC) model based on the Real-coded Accelerating Genetic Algorithm (RAGA) into the process of enterprises' strategy evaluation and selection. The characteristic of PPC model is that it ultimately overcomes the influence of the proportion of subjectivity and avoids precocious convergence, thus providing a new objective method for strategy evaluation and selection by pursuing the most objective strategy evaluation to make the relatively sensible strategy portfolio and action.展开更多
文摘Xinjiang has effectively safeguarded the basic rights of people of all ethnic groups to work and employment,and made great strides in economic and social development,thus significantly improving people’s livelihoods.
文摘One of the difficulties frequently encountered in water quality assessment is that there are many factors and they cannot be assessed according to one factor, all the effect factors associated with water quality must be used. In order to overcome this issues the projection pursuit principle is introduced into water quality assessment, and projection pursuit cluster(PPC) model is developed in this study. The PPC model makes the transition from high dimension to one-dimension. In other words, based on the PPC model, multifactor problem can be converted to one factor problem. The application of PPC model can be divided into four parts: (1) to estimate projection index function Q(); (2) to find the right projection direction ; (3) to calculate projection characteristic value of the i th sample z-i, and (4) to draw comprehensive analysis on the basis of z-i. On the other hand, the empirical formula of cutoff radius R is developed, which is benefit for the model to be used in practice. Finally, a case study of water quality assessment is proposed in this paper. The results showed that the PPC model is reasonable, and it is more objective and less subjective in water quality assessment. It is a new method for multivariate problem comprehensive analysis.
文摘The research shows that projection pursuit cluster (PPC) model is able to form a suitable index for overcom-ing the difficulties in comprehensive evaluation, which can be used to analyze complex multivariate prob-lems. The PPC model is widely used in multifactor cluster and evaluation analysis, but there are a few prob-lems needed to be solved in practice, such as cutoff radius parameter calibration. In this study, a new model-projection pursuit dynamic cluster (PPDC) model-based on projection pursuit principle is developed and used in water resources carrying capacity evaluation in China for the first time. In the PPDC model, there are two improvements compared with the PPC model, 1) a new projection index is constructed based on dynamic cluster principle, which avoids the problem of parameter calibration in the PPC model success-fully;2) the cluster results can be outputted directly according to the PPDC model, but the cluster results can be got based on the scatter points of projected characteristic values or the re-analysis for projected character-istic values in the PPC model. The results show that the PPDC model is a very effective and powerful tool in multifactor data exploratory analysis. It is a new method for water resources carrying capacity evaluation. The PPDC model and its application to water resources carrying capacity evaluation are introduced in detail in this paper.
基金Project supported by the China Postdoctoral Science Foundation,the Youth Foundation of Sichuan University(No.432028)and the National High-Tech Research and Development Program of China(863 Program)(No.2002AA2Z4251).
文摘A new technique of dimension reduction named projection pursuit is applied to model and evaluatewetland soil quality variations in the Sanjiang Plain, Helongjiang Province, China. By adopting the im-proved real-coded accelerating genetic algorithm (RAGA), the projection direction is optimized and multi-dimensional indexes are converted into low-dimensional space. Classification of wetland soils and evaluationof wetland soil quality variations are realized by pursuing optimum projection direction and projection func-tion value. Therefore, by adopting this new method, any possible human interference can be avoided andsound results can be achieved in researching quality changes and classification of wetland soils.
文摘To suppress noise amplitude modulation jamming in a single-antenna radar system, a new method based on weighted-matching pursuit (WMP) algorithm is proposed, which can achieve underdetermined blind sources separation of the jamming and the target echo from the jammed mixture in the single channel of the receiver. Firstly, the presented method utilizes a prior information about the differences between the jamming component and the radar transmitted signal to construct two signal-adapted sub-dictionaries and to determine the weights. Then the WMP algorithm is applied to remove the jamming component from the mixture. Experimental results verify the validity of the presented method. By comparison of the pulse compression performance, the simulation results shows that the presented method is superior to the method of frequency domain cancellation (FDC) when the jamming-to-signal ratio (JSR) is lower than 15 dB.
文摘In the time-frequency analysis of seismic signals, the matching pursuit algorithm is an effective tool for non-stationary signals, and has high time-frequency resolution and a transient structure with local self-adaption. We expand the time-frequency dictionary library with Ricker, Morlet, and mixed phase seismic wavelets, to make the method more suitable for seismic signal time-frequency decomposition. In this paper, we demonstrated the algorithm theory using synthetic seismic data, and tested the method using synthetic data with 25% noise. We compared the matching pursuit results of the time-frequency dictionaries. The results indicated that the dictionary which matched the signal characteristics better would obtain better results, and can reflect the information of seismic data effectively.
文摘A simple and effective greedy algorithm for image approximation is proposed. Based on the matching pursuit approach, it is characterized by a reduced computational complexity benefiting from two major modifications. First, it iteratively finds an approximation by selecting M atoms instead of one at a time. Second, the inner product computations are confined within only a fraction of dictionary atoms at each iteration. The modifications are implemented very efficiently due to the spatial incoherence of the dictionary. Experimental results show that compared with full search matching pursuit, the proposed algorithm achieves a speed-up gain of 14.4-36.7 times while maintaining the approximation quality.
基金supported by the National Natural Science Foundationof China(51275348)
文摘Recovering the low-rank structure of data matrix from sparse errors arises in the principal component pursuit (PCP). This paper exploits the higher-order generalization of matrix recovery, named higher-order principal component pursuit (HOPCP), since it is critical in multi-way data analysis. Unlike the convexification (nuclear norm) for matrix rank function, the tensorial nuclear norm is stil an open problem. While existing preliminary works on the tensor completion field provide a viable way to indicate the low complexity estimate of tensor, therefore, the paper focuses on the low multi-linear rank tensor and adopt its convex relaxation to formulate the convex optimization model of HOPCP. The paper further propose two algorithms for HOPCP based on alternative minimization scheme: the augmented Lagrangian alternating direction method (ALADM) and its truncated higher-order singular value decomposition (ALADM-THOSVD) version. The former can obtain a high accuracy solution while the latter is more efficient to handle the computationally intractable problems. Experimental results on both synthetic data and real magnetic resonance imaging data show the applicability of our algorithms in high-dimensional tensor data processing.
文摘生态翻译学以探索普适翻译规律为目标,将翻译活动定义为译者在翻译生态环境中对各相关元素的适应选择行为,为电影片名翻译提供了全新的理论视角与实践方法。本文以美国影片The Pursuit of Happyness片名汉译为例,从语言维、文化维、交际维的三维适应性选择转换视角分析译者的整个翻译过程,借此管窥电影片名翻译的生态翻译学启示。
文摘During the process of enterprises' strategy evaluation and selection, there are many evaluating indicators, and among them there are some potential correlations and conflicts. Thus it poses the problems to the decision-makers how to conduct correct evaluation on a business and how to make strategy adjustment and selection according to the evaluation. Based on the qualitative and quantitative method, the paper introduces the Projection Pursuit Classification (PPC) model based on the Real-coded Accelerating Genetic Algorithm (RAGA) into the process of enterprises' strategy evaluation and selection. The characteristic of PPC model is that it ultimately overcomes the influence of the proportion of subjectivity and avoids precocious convergence, thus providing a new objective method for strategy evaluation and selection by pursuing the most objective strategy evaluation to make the relatively sensible strategy portfolio and action.