Covalent organic polymer(COP)thin film-based memristors have generated intensive research interest,but the studies are still in their infancy.Herein,by controlling the content of hydroxyl groups in the aldehyde monome...Covalent organic polymer(COP)thin film-based memristors have generated intensive research interest,but the studies are still in their infancy.Herein,by controlling the content of hydroxyl groups in the aldehyde monomer,Py-COP thin films with different electronic push-pull effects were fabricated bearing distinct memory performances,where the films were prepared by the solid-liquid interface method on the ITO substrates and further fabricated as memory devices with ITO/Py-COPs/Ag architectures.The Py-COP-1-based memory device only exhibited binary memory behavior with an ON/OFF ratio of 1:10^(1.87).In contrast,the device based on Py-COP-2 demonstrated ternary memory behavior with an ON/OFF ratio of 1:10^(0.6):10^(3.1) and a ternary yield of 55%.The ternary memory mechanism of the ITO/Py-COP-2/Ag memory device is most likely due to the combination of the trapping of charge carriers and conductive filaments.Interestingly,the Py-COPs-based devices can successfully emulate the synaptic potentiation/depression behavior,clarifying the programmability of these devices in neuromorphic systems.These results suggest that the electronic properties of COPs can be precisely tuned at the molecular level,which provides a promising route for designing multi-level memory devices.展开更多
Low-electrode capacitive deionization(FCDI)is an emerging desalination technology with great potential for removal and/or recycling ions from a range of waters.However,it still suffers from inefficient charge transfer...Low-electrode capacitive deionization(FCDI)is an emerging desalination technology with great potential for removal and/or recycling ions from a range of waters.However,it still suffers from inefficient charge transfer and ion transport kinetics due to weak turbulence and low electric intensity in flow electrodes,both restricted by the current collectors.Herein,a new tip-array current collector(designated as T-CC)was developed to replace the conventional planar current collectors,which intensifies both the charge transfer and ion transport significantly.The effects of tip arrays on flow and electric fields were studied by both computational simulations and electrochemical impedance spectroscopy,which revealed the reduction of ion transport barrier,charge transport barrier and internal resistance.With the voltage increased from 1.0 to 1.5 and 2.0 V,the T-CC-based FCDI system(T-FCDI)exhibited average salt removal rates(ASRR)of 0.18,0.50,and 0.89μmol cm^(-2) min^(-1),respectively,which are 1.82,2.65,and 2.48 folds higher than that of the conventional serpentine current collectors,and 1.48,1.67,and 1.49 folds higher than that of the planar current collectors.Meanwhile,with the solid content in flow electrodes increased from 1 to 5 wt%,the ASRR for T-FCDI increased from 0.29 to 0.50μmol cm^(-2) min^(-1),which are 1.70 and 1.67 folds higher than that of the planar current collectors.Additionally,a salt removal efficiency of 99.89%was achieved with T-FCDI and the charge efficiency remained above 95%after 24 h of operation,thus showing its superior long-term stability.展开更多
The microstructural evolution of a cold-rolled and intercritical annealed medium-Mn steel(Fe-0.10C-5Mn)was investigated during uniaxial tensile testing.In-situ observations under scanning electron microscopy,transmiss...The microstructural evolution of a cold-rolled and intercritical annealed medium-Mn steel(Fe-0.10C-5Mn)was investigated during uniaxial tensile testing.In-situ observations under scanning electron microscopy,transmission electron microscopy,and X-ray diffraction analysis were conducted to characterize the progressive transformation-induced plasticity process and associated fracture initiation mechanisms.These findings were discussed with the local strain measurements via digital image correlation.The results indicated that Lüders band formation in the steel was limited to 1.5%strain,which was mainly due to the early-stage martensitic phase transformation of a very small amount of the less stable large-sized retained austenite(RA),which led to localized stress concentrations and strain hardening and further retardation of yielding.The small-sized RA exhibited high stability and progressively transformed into martensite and contributed to a stably extended Portevin-Le Chatelier effect.The volume fraction of RA gradually decreased from 26.8%to 8.2%prior to fracture.In the late deformation stage,fracture initiation primarily occurred at the austenite/martensite and ferrite/martensite interfaces and the ferrite phase.展开更多
van der Waals(vdW)heterostructures constructed by lowdimensional(0D,1D,and 2D)materials are emerging as one of the most appealing systems in next-generation flexible photodetection.Currently,hand-stacked vdW-type phot...van der Waals(vdW)heterostructures constructed by lowdimensional(0D,1D,and 2D)materials are emerging as one of the most appealing systems in next-generation flexible photodetection.Currently,hand-stacked vdW-type photodetectors are not compatible with large-areaarray fabrication and show unimpressive performance in self-powered mode.Herein,vertical 1D GaN nanorods arrays(NRAs)/2D MoS_(2)/PEDOT:PSS in wafer scale have been proposed for self-powered flexible photodetectors arrays firstly.The as-integrated device without external bias under weak UV illumination exhibits a competitive responsivity of 1.47 A W^(−1)and a high detectivity of 1.2×10^(11)Jones,as well as a fast response speed of 54/71μs,thanks to the strong light absorption of GaN NRAs and the efficient photogenerated carrier separation in type-II heterojunction.Notably,the strain-tunable photodetection performances of device have been demonstrated.Impressively,the device at−0.78%strain and zero bias reveals a significantly enhanced photoresponse with a responsivity of 2.47 A W^(−1),a detectivity of 2.6×10^(11)Jones,and response times of 40/45μs,which are superior to the state-of-the-art self-powered flexible photodetectors.This work presents a valuable avenue to prepare tunable vdWs heterostructures for self-powered flexible photodetection,which performs well in flexible sensors.展开更多
The highly selective catalytic hydrogenation of halogenated nitroaromatics was achieved by employing Pd‑based catalysts that were co‑modified with organic and inorganic ligands.It was demonstrated that the catalysts c...The highly selective catalytic hydrogenation of halogenated nitroaromatics was achieved by employing Pd‑based catalysts that were co‑modified with organic and inorganic ligands.It was demonstrated that the catalysts contained Pd species in mixed valence states,with high valence Pd at the metal‑support interface and zero valence Pd at the metal surface.While the strong coordination of triphenylphosphine(PPh3)to Pd0 on the Pd surface prevents the adsorption of halogenated nitroaromatics and thus dehalogenation,the coordination of sodium metavanadate(NaVO3)to high‑valence Pd sites at the interface helps to activate H2 in a heterolytic pathway for the selective hydrogenation of nitro‑groups.The excellent catalytic performance of the interfacial active sites enables the selective hydrogenation of a wide range of halogenated nitroaromatics.展开更多
Using the software ANSYS-19.2/Explicit Dynamics,this study performedfinite-element modeling of the large-diameter steel pipeline cross-section for the Beineu-Bozoy-Shymkent gas pipeline with a non-through straight crac...Using the software ANSYS-19.2/Explicit Dynamics,this study performedfinite-element modeling of the large-diameter steel pipeline cross-section for the Beineu-Bozoy-Shymkent gas pipeline with a non-through straight crack,strengthened by steel wire wrapping.The effects of the thread tensile force of the steel winding in the form of single rings at the crack edges and the wires with different winding diameters and pitches were also studied.The results showed that the strengthening was preferably executed at a minimum value of the thread tensile force,which was 6.4%more effective than that at its maximum value.The analysis of the influence of the winding dia-meters showed that the equivalent stresses increased by 32%from the beginning of the crack growth until the wire broke.The increment in winding diameter decelerated the disclosure of the edge crack and reduced its length by 8.2%.The analysis of the influence of the winding pitch showed that decreasing the distance between the winding turns also led to a 33.6%reduction in the length of the straight crack and a 7.9%reduction in the maximum stres-ses on the strengthened pipeline cross-section.The analysis of the temperature effect on the pipeline material,within a range from-40℃ to+50℃,resulted in a crack length change of up to 5.8%.As the temperature dropped,the crack length decreased.Within such a temperature range,the maximum stresses were observed along the cen-tral area of the crack,which were equal to 413 MPa at+50℃ and 440 MPa at-40℃.The results also showed that the presence of the steel winding in the pipeline significantly reduced the length of crack propagation up to 8.4 times,depending on the temperature effect and design parameters of prestressing.This work integrated the existing methods for crack localization along steel gas pipelines.展开更多
BACKGROUND Sensitivity to stress is essential in the onset,clinical symptoms,course,and prognosis of major depressive disorder(MDD).Meanwhile,it was unclear how variously classified but connected stress-sensitivity va...BACKGROUND Sensitivity to stress is essential in the onset,clinical symptoms,course,and prognosis of major depressive disorder(MDD).Meanwhile,it was unclear how variously classified but connected stress-sensitivity variables affect MDD.We hypothesize that high-level trait-and state-related stress-sensitivity factors may have different cumulative effects on the clinical symptoms and follow-up outcomes of MDD.AIM To investigate how stress-sensitivity factors added up and affected MDD clinical symptoms and follow-up results.METHODS In this prospective study,281 MDD patients were enrolled from a tertiary care setting.High-level stress-sensitivity factors were classified as trait anxiety,state anxiety,perceived stress,and neuroticism,with a total score in the top quartile of the research cohort.The cumulative effects of stress-sensitivity factors on cognitive dysfunction,disability and functional impairment,suicide risk,and depressive and anxiety symptoms were examined using an analysis of variance with linear trend analysis.Correlations were investigated further using multiple regression analysis.RESULTS Regarding high-level stress-sensitivity factors,53.40%of patients had at least one at baseline,and 29.61%had two or more.Four high-level stress-sensitivity components had significant cumulative impacts on MDD symptoms at baseline(all P<0.001).Perceived stress predicted the greatest effect sizes of state-related factors on depressive symptoms(partialη^(2)=0.153;standardizedβ=0.195;P<0.05).The follow-up outcomes were significantly impacted only by the high-level trait-related components,mainly when it came to depressive symptoms and suicide risk,which were predicted by trait anxiety and neuroticism,respectively(partialη^(2)=0.204 and 0.156;standardizedβ=0.247 and 0.392;P<0.05).CONCLUSION To enhance outcomes of MDD and lower the suicide risk,screening for stress-sensitivity factors and considering multifaceted measures,mainly focusing on trait-related ones,should be addressed clinically.展开更多
Traffic engineering such as tunnels in various altitudinal gradient zone are at risk of accidental explosion,which can damage personnel and equipment.Accurate prediction of the distribution pattern of explosive loads ...Traffic engineering such as tunnels in various altitudinal gradient zone are at risk of accidental explosion,which can damage personnel and equipment.Accurate prediction of the distribution pattern of explosive loads and shock wave propagation process in semi-enclosed structures at various altitude environment is key research focus in the fields of explosion shock and fluid dynamics.The effect of altitude on the propagation of shock waves in tunnels was investigated by conducting explosion test and numerical simulation.Based on the experimental and numerical simulation results,a prediction model for the attenuation of the peak overpressure of tunnel shock waves at different altitudes was established.The results showed that the peak overpressure decreased at the same measurement points in the tunnel entrance under the high altitude condition.In contrast,an increase in altitude accelerated the propagation speed of the shock wave in the tunnel.The average error between the peak shock wave overpressure obtained using the overpressure prediction formula and the measured test data was less than15%,the average error between the propagation velocity of shock waves predicted values and the test data is less than 10%.The method can effectively predict the overpressure attenuation of blast wave in tunnel at various altitudes.展开更多
BACKGROUND Routinely separating the ligamentum teres uteri(LTU)intraoperatively remains an unresolved issue for female children undergoing surgery for indirect inguinal hernia(IIH).AIM To identify the effect of LTU pr...BACKGROUND Routinely separating the ligamentum teres uteri(LTU)intraoperatively remains an unresolved issue for female children undergoing surgery for indirect inguinal hernia(IIH).AIM To identify the effect of LTU preservation in laparoscopic high hernia sac ligation(LHSL)in children with IIH.METHODS The participants were 100 female children with unilateral IIH admitted from April 2022 to January 2024 to the Pediatric Surgery Department of Zhangzhou Municipal Hospital of Fujian Province.They were categorized based on LTU retention into the control group(n=45 cases),which underwent LTU ligation intraoperatively,and the experimental group(55 cases),which had the LTU preserved intraoperatively.All children underwent LHSL.RESULTS This study comparatively analyzed the operation time,hospitalization time,blood loss,postoperative recurrence rate,and complications(repeated pain in the inguinal region,foreign body sensation in the inguinal region,bloody exudation at the inguinal incision,and incision infection),which were all comparable between the two groups.CONCLUSION The above results indicate that LTU preservation during LHSL exerts certain therapeutic benefits for children with IIH.LTU preservation does not increase hospitalization time,blood loss,postoperative recurrence rate,and complications,which is safe and feasible,compared with conventional LTU ligation.LHSL with LTU preservation should be performed if conditions permit,which is worth popularizing.展开更多
Thirteen volatile compounds were identified from Flemingia macrophylla plants. Eight major components significantly attracted the tea green leafhoppers, Empoasca flavescens F. Based on their relative abundances, follo...Thirteen volatile compounds were identified from Flemingia macrophylla plants. Eight major components significantly attracted the tea green leafhoppers, Empoasca flavescens F. Based on their relative abundances, following synthetic blends were made for field experiments: 1) eight-component-attractant blend included Z-3-hexen-1-ol, Z-3-hexenyl acetate, Z-ocimene, Me SA, Z-3-hexenyl butyrate, dodecane, hexadecane and nonanal at 10, 10, 1, 11, 2, 6, 2 and 4 mg mL^-1 in n-hexane, respectively;2) four-component-attractant blend #1 contained hexadecane, Z-3-hexenyl acetate, Z-3-hexen-1-ol and nonanal at 2, 10, 10 and 4 mg mL^-1 in n-hexane, respectively;3) four-component-attractant blend #2 contained hexadecane, Z-3-hexenyl acetate, Z-3-hexen-1-ol and Me SA at 2, 10, 10 and 11 mg mL^-1 in n-hexane, respectively. Thymol and 1-methoxy-4-methyl-2-(1-methylethyl)-benzene, identified from Lavandula angustifolia aeration samples, significantly repelled the leafhopper as strong repellents when tested alone or in combination at 10 mg mL^-1. For field bioassays, each attractant lure was attached to a bud green sticky board hung from a bamboo stick at above tea plant level for catching the leafhoppers, whereas the repellent dispenser was tied to a tea branch inside tea clump for pushing the leafhoppers away from tea clumps. The results showed that the eight-component-attractant blend caught similar numbers of the leafhopper as did the four-component-attractant blend #1 at about 53–79 leafhoppers/trap/day, which were significantly higher than those on the hexane-control bud green sticky boards. Average leafhopper catches from un-baited sticky boards were about 51–73 leafhoppers/trap/day when pushed by the repellents placed inside tea plants, with the two-component-repellent blend being more effective than their single components. When the two-component-repellent blend was further tested with the three attractant blends in a push-pull fashion, average trap catches ranged from 62 to 92 leafhoppers/trap/day. Control efficacy on the leafhoppers within the push-pull zones increased progressively from day 1(43%) to day 5(73%). This push-pull approach might have a great potential as a green control strategy for combating the tea green leafhoppers.展开更多
In China, farmers employed in non-farm work have become important socio-economic actors, but few studies have examined the farmers' perspective in making their work location choices. Based on "push-pull"...In China, farmers employed in non-farm work have become important socio-economic actors, but few studies have examined the farmers' perspective in making their work location choices. Based on "push-pull" migration theory, this paper utilizes sectional data from a 2013 survey of farmers in China's Three Gorges Reservoir area to empirically analyze the factors influencing migrant workers' choice of employment location. The results indicate that 60.46% of laborers have migrated from their home province, whereas 39.54% have remained in their home province. Focusing on personal, household, and community characteristics—in addition to the economic characteristics of the sample counties—multinomial logistic regression models reveal that farmer-laborers' employment location decisions are influenced by their personal capital endowment(age, years of education and social networks), family structure(the number of laborers, elders, children and students), home village characteristics(location, economic development level and the degree of relief of the land) and home county economic development level. Notably, male and female laborers' location decisions reveal a converging trend, and their differences are not pronounced. Per capita arable land area has little influence on location decisions, whereas the educational level of laborers has a significant impact. The results differ significantly from those found in previous studies.展开更多
With the widespread application of distributed systems, many problems need to be solved urgently. How to design distributed optimization strategies has become a research hotspot. This article focuses on the solution r...With the widespread application of distributed systems, many problems need to be solved urgently. How to design distributed optimization strategies has become a research hotspot. This article focuses on the solution rate of the distributed convex optimization algorithm. Each agent in the network has its own convex cost function. We consider a gradient-based distributed method and use a push-pull gradient algorithm to minimize the total cost function. Inspired by the current multi-agent consensus cooperation protocol for distributed convex optimization algorithm, a distributed convex optimization algorithm with finite time convergence is proposed and studied. In the end, based on a fixed undirected distributed network topology, a fast convergent distributed cooperative learning method based on a linear parameterized neural network is proposed, which is different from the existing distributed convex optimization algorithms that can achieve exponential convergence. The algorithm can achieve finite-time convergence. The convergence of the algorithm can be guaranteed by the Lyapunov method. The corresponding simulation examples also show the effectiveness of the algorithm intuitively. Compared with other algorithms, this algorithm is competitive.展开更多
240 nm AlGaN-based micro-LEDs with different sizes are designed and fabricated.Then,the external quantum efficiency(EQE)and light extraction efficiency(LEE)are systematically investigated by comparing size and edge ef...240 nm AlGaN-based micro-LEDs with different sizes are designed and fabricated.Then,the external quantum efficiency(EQE)and light extraction efficiency(LEE)are systematically investigated by comparing size and edge effects.Here,it is revealed that the peak optical output power increases by 81.83%with the size shrinking from 50.0 to 25.0μm.Thereinto,the LEE increases by 26.21%and the LEE enhancement mainly comes from the sidewall light extraction.Most notably,transversemagnetic(TM)mode light intensifies faster as the size shrinks due to the tilted mesa side-wall and Al reflector design.However,when it turns to 12.5μm sized micro-LEDs,the output power is lower than 25.0μm sized ones.The underlying mechanism is that even though protected by SiO2 passivation,the edge effect which leads to current leakage and Shockley-Read-Hall(SRH)recombination deteriorates rapidly with the size further shrinking.Moreover,the ratio of the p-contact area to mesa area is much lower,which deteriorates the p-type current spreading at the mesa edge.These findings show a role of thumb for the design of high efficiency micro-LEDs with wavelength below 250 nm,which will pave the way for wide applications of deep ultraviolet(DUV)micro-LEDs.展开更多
Lithium–sulfur(Li–S)batteries are supposed to be one of the most potential next-generation batteries owing to their high theoretical capacity and low cost.Nevertheless,the shuttle effect of firm multi-step two-elect...Lithium–sulfur(Li–S)batteries are supposed to be one of the most potential next-generation batteries owing to their high theoretical capacity and low cost.Nevertheless,the shuttle effect of firm multi-step two-electron reaction between sulfur and lithium in liquid electrolyte makes the capacity much smaller than the theoretical value.Many methods were proposed for inhibiting the shuttle effect of polysulfide,improving corresponding redox kinetics and enhancing the integral performance of Li–S batteries.Here,we will comprehensively and systematically summarize the strategies for inhibiting the shuttle effect from all components of Li–S batteries.First,the electrochemical principles/mechanism and origin of the shuttle effect are described in detail.Moreover,the efficient strategies,including boosting the sulfur conversion rate of sulfur,confining sulfur or lithium polysulfides(LPS)within cathode host,confining LPS in the shield layer,and preventing LPS from contacting the anode,will be discussed to suppress the shuttle effect.Then,recent advances in inhibition of shuttle effect in cathode,electrolyte,separator,and anode with the aforementioned strategies have been summarized to direct the further design of efficient materials for Li–S batteries.Finally,we present prospects for inhibition of the LPS shuttle and potential development directions in Li–S batteries.展开更多
基金financially supported by the National Natural Science Foundation of China(Nos.21972021 and 22111530111)the support of China Scholarship Council(No.202206650013).
文摘Covalent organic polymer(COP)thin film-based memristors have generated intensive research interest,but the studies are still in their infancy.Herein,by controlling the content of hydroxyl groups in the aldehyde monomer,Py-COP thin films with different electronic push-pull effects were fabricated bearing distinct memory performances,where the films were prepared by the solid-liquid interface method on the ITO substrates and further fabricated as memory devices with ITO/Py-COPs/Ag architectures.The Py-COP-1-based memory device only exhibited binary memory behavior with an ON/OFF ratio of 1:10^(1.87).In contrast,the device based on Py-COP-2 demonstrated ternary memory behavior with an ON/OFF ratio of 1:10^(0.6):10^(3.1) and a ternary yield of 55%.The ternary memory mechanism of the ITO/Py-COP-2/Ag memory device is most likely due to the combination of the trapping of charge carriers and conductive filaments.Interestingly,the Py-COPs-based devices can successfully emulate the synaptic potentiation/depression behavior,clarifying the programmability of these devices in neuromorphic systems.These results suggest that the electronic properties of COPs can be precisely tuned at the molecular level,which provides a promising route for designing multi-level memory devices.
基金supported by the Shenzhen Science and Technology Program(JCYJ20230808105111022,JCYJ20220818095806013)Natural Science Foundation of Guangdong(2023A1515012267)+1 种基金the National Natural Science Foundation of China(22178223)the Royal Society/NSFC cost share program(IEC\NSFC\223372).
文摘Low-electrode capacitive deionization(FCDI)is an emerging desalination technology with great potential for removal and/or recycling ions from a range of waters.However,it still suffers from inefficient charge transfer and ion transport kinetics due to weak turbulence and low electric intensity in flow electrodes,both restricted by the current collectors.Herein,a new tip-array current collector(designated as T-CC)was developed to replace the conventional planar current collectors,which intensifies both the charge transfer and ion transport significantly.The effects of tip arrays on flow and electric fields were studied by both computational simulations and electrochemical impedance spectroscopy,which revealed the reduction of ion transport barrier,charge transport barrier and internal resistance.With the voltage increased from 1.0 to 1.5 and 2.0 V,the T-CC-based FCDI system(T-FCDI)exhibited average salt removal rates(ASRR)of 0.18,0.50,and 0.89μmol cm^(-2) min^(-1),respectively,which are 1.82,2.65,and 2.48 folds higher than that of the conventional serpentine current collectors,and 1.48,1.67,and 1.49 folds higher than that of the planar current collectors.Meanwhile,with the solid content in flow electrodes increased from 1 to 5 wt%,the ASRR for T-FCDI increased from 0.29 to 0.50μmol cm^(-2) min^(-1),which are 1.70 and 1.67 folds higher than that of the planar current collectors.Additionally,a salt removal efficiency of 99.89%was achieved with T-FCDI and the charge efficiency remained above 95%after 24 h of operation,thus showing its superior long-term stability.
基金supported by the National Key R&D Program of China(No.2017YFB0304402)。
文摘The microstructural evolution of a cold-rolled and intercritical annealed medium-Mn steel(Fe-0.10C-5Mn)was investigated during uniaxial tensile testing.In-situ observations under scanning electron microscopy,transmission electron microscopy,and X-ray diffraction analysis were conducted to characterize the progressive transformation-induced plasticity process and associated fracture initiation mechanisms.These findings were discussed with the local strain measurements via digital image correlation.The results indicated that Lüders band formation in the steel was limited to 1.5%strain,which was mainly due to the early-stage martensitic phase transformation of a very small amount of the less stable large-sized retained austenite(RA),which led to localized stress concentrations and strain hardening and further retardation of yielding.The small-sized RA exhibited high stability and progressively transformed into martensite and contributed to a stably extended Portevin-Le Chatelier effect.The volume fraction of RA gradually decreased from 26.8%to 8.2%prior to fracture.In the late deformation stage,fracture initiation primarily occurred at the austenite/martensite and ferrite/martensite interfaces and the ferrite phase.
基金supported by the National Key Research and Development Program of China(No.2022YFB3604500,No.2022YFB3604501)the National Natural Science Foundation of China(No.52172141)the Technology Development Project of Shanxi-Zheda Institude of Advanced Materials and Chemical Engineering(No.2022SX-TD017).
文摘van der Waals(vdW)heterostructures constructed by lowdimensional(0D,1D,and 2D)materials are emerging as one of the most appealing systems in next-generation flexible photodetection.Currently,hand-stacked vdW-type photodetectors are not compatible with large-areaarray fabrication and show unimpressive performance in self-powered mode.Herein,vertical 1D GaN nanorods arrays(NRAs)/2D MoS_(2)/PEDOT:PSS in wafer scale have been proposed for self-powered flexible photodetectors arrays firstly.The as-integrated device without external bias under weak UV illumination exhibits a competitive responsivity of 1.47 A W^(−1)and a high detectivity of 1.2×10^(11)Jones,as well as a fast response speed of 54/71μs,thanks to the strong light absorption of GaN NRAs and the efficient photogenerated carrier separation in type-II heterojunction.Notably,the strain-tunable photodetection performances of device have been demonstrated.Impressively,the device at−0.78%strain and zero bias reveals a significantly enhanced photoresponse with a responsivity of 2.47 A W^(−1),a detectivity of 2.6×10^(11)Jones,and response times of 40/45μs,which are superior to the state-of-the-art self-powered flexible photodetectors.This work presents a valuable avenue to prepare tunable vdWs heterostructures for self-powered flexible photodetection,which performs well in flexible sensors.
文摘The highly selective catalytic hydrogenation of halogenated nitroaromatics was achieved by employing Pd‑based catalysts that were co‑modified with organic and inorganic ligands.It was demonstrated that the catalysts contained Pd species in mixed valence states,with high valence Pd at the metal‑support interface and zero valence Pd at the metal surface.While the strong coordination of triphenylphosphine(PPh3)to Pd0 on the Pd surface prevents the adsorption of halogenated nitroaromatics and thus dehalogenation,the coordination of sodium metavanadate(NaVO3)to high‑valence Pd sites at the interface helps to activate H2 in a heterolytic pathway for the selective hydrogenation of nitro‑groups.The excellent catalytic performance of the interfacial active sites enables the selective hydrogenation of a wide range of halogenated nitroaromatics.
基金funded by the Science Committee of the Ministry of Science and Higher Education of the Republic of Kazakhstan(Grant No.AP19680589).
文摘Using the software ANSYS-19.2/Explicit Dynamics,this study performedfinite-element modeling of the large-diameter steel pipeline cross-section for the Beineu-Bozoy-Shymkent gas pipeline with a non-through straight crack,strengthened by steel wire wrapping.The effects of the thread tensile force of the steel winding in the form of single rings at the crack edges and the wires with different winding diameters and pitches were also studied.The results showed that the strengthening was preferably executed at a minimum value of the thread tensile force,which was 6.4%more effective than that at its maximum value.The analysis of the influence of the winding dia-meters showed that the equivalent stresses increased by 32%from the beginning of the crack growth until the wire broke.The increment in winding diameter decelerated the disclosure of the edge crack and reduced its length by 8.2%.The analysis of the influence of the winding pitch showed that decreasing the distance between the winding turns also led to a 33.6%reduction in the length of the straight crack and a 7.9%reduction in the maximum stres-ses on the strengthened pipeline cross-section.The analysis of the temperature effect on the pipeline material,within a range from-40℃ to+50℃,resulted in a crack length change of up to 5.8%.As the temperature dropped,the crack length decreased.Within such a temperature range,the maximum stresses were observed along the cen-tral area of the crack,which were equal to 413 MPa at+50℃ and 440 MPa at-40℃.The results also showed that the presence of the steel winding in the pipeline significantly reduced the length of crack propagation up to 8.4 times,depending on the temperature effect and design parameters of prestressing.This work integrated the existing methods for crack localization along steel gas pipelines.
基金Supported by Science and Technology Innovation 2030-Major Projects,No.2021ZD0202000National Key Research and Development Program of China,No.2019YFA0706200+2 种基金National Natural Science Foundation of China,No.82371535Science and Technology Innovation Program of Hunan Province,No.2023RC3083Fundamental Research Funds for the Central Universities of Central South University,No.2023ZZTS0838.
文摘BACKGROUND Sensitivity to stress is essential in the onset,clinical symptoms,course,and prognosis of major depressive disorder(MDD).Meanwhile,it was unclear how variously classified but connected stress-sensitivity variables affect MDD.We hypothesize that high-level trait-and state-related stress-sensitivity factors may have different cumulative effects on the clinical symptoms and follow-up outcomes of MDD.AIM To investigate how stress-sensitivity factors added up and affected MDD clinical symptoms and follow-up results.METHODS In this prospective study,281 MDD patients were enrolled from a tertiary care setting.High-level stress-sensitivity factors were classified as trait anxiety,state anxiety,perceived stress,and neuroticism,with a total score in the top quartile of the research cohort.The cumulative effects of stress-sensitivity factors on cognitive dysfunction,disability and functional impairment,suicide risk,and depressive and anxiety symptoms were examined using an analysis of variance with linear trend analysis.Correlations were investigated further using multiple regression analysis.RESULTS Regarding high-level stress-sensitivity factors,53.40%of patients had at least one at baseline,and 29.61%had two or more.Four high-level stress-sensitivity components had significant cumulative impacts on MDD symptoms at baseline(all P<0.001).Perceived stress predicted the greatest effect sizes of state-related factors on depressive symptoms(partialη^(2)=0.153;standardizedβ=0.195;P<0.05).The follow-up outcomes were significantly impacted only by the high-level trait-related components,mainly when it came to depressive symptoms and suicide risk,which were predicted by trait anxiety and neuroticism,respectively(partialη^(2)=0.204 and 0.156;standardizedβ=0.247 and 0.392;P<0.05).CONCLUSION To enhance outcomes of MDD and lower the suicide risk,screening for stress-sensitivity factors and considering multifaceted measures,mainly focusing on trait-related ones,should be addressed clinically.
基金financially supported by National Natural Science Foundation of China(Grant Nos.52378401,52278504)the Fundamental Research Funds for the Central Universities(Grant No.30922010918)。
文摘Traffic engineering such as tunnels in various altitudinal gradient zone are at risk of accidental explosion,which can damage personnel and equipment.Accurate prediction of the distribution pattern of explosive loads and shock wave propagation process in semi-enclosed structures at various altitude environment is key research focus in the fields of explosion shock and fluid dynamics.The effect of altitude on the propagation of shock waves in tunnels was investigated by conducting explosion test and numerical simulation.Based on the experimental and numerical simulation results,a prediction model for the attenuation of the peak overpressure of tunnel shock waves at different altitudes was established.The results showed that the peak overpressure decreased at the same measurement points in the tunnel entrance under the high altitude condition.In contrast,an increase in altitude accelerated the propagation speed of the shock wave in the tunnel.The average error between the peak shock wave overpressure obtained using the overpressure prediction formula and the measured test data was less than15%,the average error between the propagation velocity of shock waves predicted values and the test data is less than 10%.The method can effectively predict the overpressure attenuation of blast wave in tunnel at various altitudes.
基金Supported by the Startup Fund for Scientific Research,Fujian Medical University,No.2021QH1262.
文摘BACKGROUND Routinely separating the ligamentum teres uteri(LTU)intraoperatively remains an unresolved issue for female children undergoing surgery for indirect inguinal hernia(IIH).AIM To identify the effect of LTU preservation in laparoscopic high hernia sac ligation(LHSL)in children with IIH.METHODS The participants were 100 female children with unilateral IIH admitted from April 2022 to January 2024 to the Pediatric Surgery Department of Zhangzhou Municipal Hospital of Fujian Province.They were categorized based on LTU retention into the control group(n=45 cases),which underwent LTU ligation intraoperatively,and the experimental group(55 cases),which had the LTU preserved intraoperatively.All children underwent LHSL.RESULTS This study comparatively analyzed the operation time,hospitalization time,blood loss,postoperative recurrence rate,and complications(repeated pain in the inguinal region,foreign body sensation in the inguinal region,bloody exudation at the inguinal incision,and incision infection),which were all comparable between the two groups.CONCLUSION The above results indicate that LTU preservation during LHSL exerts certain therapeutic benefits for children with IIH.LTU preservation does not increase hospitalization time,blood loss,postoperative recurrence rate,and complications,which is safe and feasible,compared with conventional LTU ligation.LHSL with LTU preservation should be performed if conditions permit,which is worth popularizing.
基金financially supported by the National Key Research and Development Program of China (2018YFC1604402)the Natural Science Foundation of Zhejiang Province, China (LY17C140002)+1 种基金the Fundamental and Public Welfare of Zhejiang Province, China (LGN18C160006)the College Student Innovation and Entrepreneurship of Zhejiang Province, China (2017R409055)
文摘Thirteen volatile compounds were identified from Flemingia macrophylla plants. Eight major components significantly attracted the tea green leafhoppers, Empoasca flavescens F. Based on their relative abundances, following synthetic blends were made for field experiments: 1) eight-component-attractant blend included Z-3-hexen-1-ol, Z-3-hexenyl acetate, Z-ocimene, Me SA, Z-3-hexenyl butyrate, dodecane, hexadecane and nonanal at 10, 10, 1, 11, 2, 6, 2 and 4 mg mL^-1 in n-hexane, respectively;2) four-component-attractant blend #1 contained hexadecane, Z-3-hexenyl acetate, Z-3-hexen-1-ol and nonanal at 2, 10, 10 and 4 mg mL^-1 in n-hexane, respectively;3) four-component-attractant blend #2 contained hexadecane, Z-3-hexenyl acetate, Z-3-hexen-1-ol and Me SA at 2, 10, 10 and 11 mg mL^-1 in n-hexane, respectively. Thymol and 1-methoxy-4-methyl-2-(1-methylethyl)-benzene, identified from Lavandula angustifolia aeration samples, significantly repelled the leafhopper as strong repellents when tested alone or in combination at 10 mg mL^-1. For field bioassays, each attractant lure was attached to a bud green sticky board hung from a bamboo stick at above tea plant level for catching the leafhoppers, whereas the repellent dispenser was tied to a tea branch inside tea clump for pushing the leafhoppers away from tea clumps. The results showed that the eight-component-attractant blend caught similar numbers of the leafhopper as did the four-component-attractant blend #1 at about 53–79 leafhoppers/trap/day, which were significantly higher than those on the hexane-control bud green sticky boards. Average leafhopper catches from un-baited sticky boards were about 51–73 leafhoppers/trap/day when pushed by the repellents placed inside tea plants, with the two-component-repellent blend being more effective than their single components. When the two-component-repellent blend was further tested with the three attractant blends in a push-pull fashion, average trap catches ranged from 62 to 92 leafhoppers/trap/day. Control efficacy on the leafhoppers within the push-pull zones increased progressively from day 1(43%) to day 5(73%). This push-pull approach might have a great potential as a green control strategy for combating the tea green leafhoppers.
基金financial supports from the National Natural Science Foundation of China (Grant Nos. 41571527, 41301193, 41101552,41401198)Main Direction Program (KZCX2-EW317)West Light Foundation of the Chinese Academy of Sciences (2013Yuhui)
文摘In China, farmers employed in non-farm work have become important socio-economic actors, but few studies have examined the farmers' perspective in making their work location choices. Based on "push-pull" migration theory, this paper utilizes sectional data from a 2013 survey of farmers in China's Three Gorges Reservoir area to empirically analyze the factors influencing migrant workers' choice of employment location. The results indicate that 60.46% of laborers have migrated from their home province, whereas 39.54% have remained in their home province. Focusing on personal, household, and community characteristics—in addition to the economic characteristics of the sample counties—multinomial logistic regression models reveal that farmer-laborers' employment location decisions are influenced by their personal capital endowment(age, years of education and social networks), family structure(the number of laborers, elders, children and students), home village characteristics(location, economic development level and the degree of relief of the land) and home county economic development level. Notably, male and female laborers' location decisions reveal a converging trend, and their differences are not pronounced. Per capita arable land area has little influence on location decisions, whereas the educational level of laborers has a significant impact. The results differ significantly from those found in previous studies.
文摘With the widespread application of distributed systems, many problems need to be solved urgently. How to design distributed optimization strategies has become a research hotspot. This article focuses on the solution rate of the distributed convex optimization algorithm. Each agent in the network has its own convex cost function. We consider a gradient-based distributed method and use a push-pull gradient algorithm to minimize the total cost function. Inspired by the current multi-agent consensus cooperation protocol for distributed convex optimization algorithm, a distributed convex optimization algorithm with finite time convergence is proposed and studied. In the end, based on a fixed undirected distributed network topology, a fast convergent distributed cooperative learning method based on a linear parameterized neural network is proposed, which is different from the existing distributed convex optimization algorithms that can achieve exponential convergence. The algorithm can achieve finite-time convergence. The convergence of the algorithm can be guaranteed by the Lyapunov method. The corresponding simulation examples also show the effectiveness of the algorithm intuitively. Compared with other algorithms, this algorithm is competitive.
基金This work was supported by National Key R&D Program of China(2022YFB3605103)the National Natural Science Foundation of China(62204241,U22A2084,62121005,and 61827813)+3 种基金the Natural Science Foundation of Jilin Province(20230101345JC,20230101360JC,and 20230101107JC)the Youth Innovation Promotion Association of CAS(2023223)the Young Elite Scientist Sponsorship Program By CAST(YESS20200182)the CAS Talents Program(E30122E4M0).
文摘240 nm AlGaN-based micro-LEDs with different sizes are designed and fabricated.Then,the external quantum efficiency(EQE)and light extraction efficiency(LEE)are systematically investigated by comparing size and edge effects.Here,it is revealed that the peak optical output power increases by 81.83%with the size shrinking from 50.0 to 25.0μm.Thereinto,the LEE increases by 26.21%and the LEE enhancement mainly comes from the sidewall light extraction.Most notably,transversemagnetic(TM)mode light intensifies faster as the size shrinks due to the tilted mesa side-wall and Al reflector design.However,when it turns to 12.5μm sized micro-LEDs,the output power is lower than 25.0μm sized ones.The underlying mechanism is that even though protected by SiO2 passivation,the edge effect which leads to current leakage and Shockley-Read-Hall(SRH)recombination deteriorates rapidly with the size further shrinking.Moreover,the ratio of the p-contact area to mesa area is much lower,which deteriorates the p-type current spreading at the mesa edge.These findings show a role of thumb for the design of high efficiency micro-LEDs with wavelength below 250 nm,which will pave the way for wide applications of deep ultraviolet(DUV)micro-LEDs.
基金support from the “Joint International Laboratory on Environmental and Energy Frontier Materials”“Innovation Research Team of High-Level Local Universities in Shanghai”support from the National Natural Science Foundation of China (22209103)
文摘Lithium–sulfur(Li–S)batteries are supposed to be one of the most potential next-generation batteries owing to their high theoretical capacity and low cost.Nevertheless,the shuttle effect of firm multi-step two-electron reaction between sulfur and lithium in liquid electrolyte makes the capacity much smaller than the theoretical value.Many methods were proposed for inhibiting the shuttle effect of polysulfide,improving corresponding redox kinetics and enhancing the integral performance of Li–S batteries.Here,we will comprehensively and systematically summarize the strategies for inhibiting the shuttle effect from all components of Li–S batteries.First,the electrochemical principles/mechanism and origin of the shuttle effect are described in detail.Moreover,the efficient strategies,including boosting the sulfur conversion rate of sulfur,confining sulfur or lithium polysulfides(LPS)within cathode host,confining LPS in the shield layer,and preventing LPS from contacting the anode,will be discussed to suppress the shuttle effect.Then,recent advances in inhibition of shuttle effect in cathode,electrolyte,separator,and anode with the aforementioned strategies have been summarized to direct the further design of efficient materials for Li–S batteries.Finally,we present prospects for inhibition of the LPS shuttle and potential development directions in Li–S batteries.