The doping effect of rare earth elements (Tb and Sm) on the electronic structure of (110) martensitic twin boundary in Ni2MnGa alloys was investigated by using ab initio method within the DFT and the supercell impleme...The doping effect of rare earth elements (Tb and Sm) on the electronic structure of (110) martensitic twin boundary in Ni2MnGa alloys was investigated by using ab initio method within the DFT and the supercell implementation. The calculated results show that the atomic relaxation lowers the boundary energy and the segregation energy. Sm seems easier to segregate to the boundary and has a greater doping effect compared with Tb due to its lower segregation energy and bigger bonder order with neighboring atoms. Tb makes a greater contribution to the magnetic properties of the twin boundary than Sm.展开更多
Microstructure,texture evolution and strain hardening behaviour of the Mg-1Y and Mg-1Zn(wt%)alloys were investigated under room temperature compression.Microstructural characterization was performed by optical microsc...Microstructure,texture evolution and strain hardening behaviour of the Mg-1Y and Mg-1Zn(wt%)alloys were investigated under room temperature compression.Microstructural characterization was performed by optical microscopy,scanning electron microscopy,electron back scattered diffraction and transmission electron microscopy.The experimental results show that Mg-1Zn alloy exhibits conventional three-stage strain hardening curves,while Mg-1Y alloy exhibits novel six-stage strain hardening curves.For Mg-1Y alloy,rare earth texture leads to weak tensile twinning activity in compression and consequently results in a moderate evolution to<0001>texture.Moreover,inefficient tensile twinning activity and weak slip-twinning interaction give rise to excellent ductility and high hardening capacity but low strain hardening rate.For Mg-1Zn alloy,basal texture leads to pronounced tensile twinning activity in compression and consequently results in rapid evolution to<0001>texture.The intense tensile twinning activity and strong slip-twinning interaction lead to high strain hardening rate but poor ductility and low hardening capacity.展开更多
基金Project supported by the National Natural Science Foundation of China (50301011, 50571066) and this grant is gratefully acknowledged
文摘The doping effect of rare earth elements (Tb and Sm) on the electronic structure of (110) martensitic twin boundary in Ni2MnGa alloys was investigated by using ab initio method within the DFT and the supercell implementation. The calculated results show that the atomic relaxation lowers the boundary energy and the segregation energy. Sm seems easier to segregate to the boundary and has a greater doping effect compared with Tb due to its lower segregation energy and bigger bonder order with neighboring atoms. Tb makes a greater contribution to the magnetic properties of the twin boundary than Sm.
基金Funded by the Beijing Municipal Natural Science Foundation (No.2202004)the National Natural Science Foundation of China (No.51801048)the Basic Research Fund for Newly Enrolled Teachers and the Fund for Distinguished Young Scholars of China Academy of Space Technology。
文摘Microstructure,texture evolution and strain hardening behaviour of the Mg-1Y and Mg-1Zn(wt%)alloys were investigated under room temperature compression.Microstructural characterization was performed by optical microscopy,scanning electron microscopy,electron back scattered diffraction and transmission electron microscopy.The experimental results show that Mg-1Zn alloy exhibits conventional three-stage strain hardening curves,while Mg-1Y alloy exhibits novel six-stage strain hardening curves.For Mg-1Y alloy,rare earth texture leads to weak tensile twinning activity in compression and consequently results in a moderate evolution to<0001>texture.Moreover,inefficient tensile twinning activity and weak slip-twinning interaction give rise to excellent ductility and high hardening capacity but low strain hardening rate.For Mg-1Zn alloy,basal texture leads to pronounced tensile twinning activity in compression and consequently results in rapid evolution to<0001>texture.The intense tensile twinning activity and strong slip-twinning interaction lead to high strain hardening rate but poor ductility and low hardening capacity.