期刊文献+
共找到40篇文章
< 1 2 >
每页显示 20 50 100
An improved deep dilated convolutional neural network for seismic facies interpretation
1
作者 Na-Xia Yang Guo-Fa Li +2 位作者 Ting-Hui Li Dong-Feng Zhao Wei-Wei Gu 《Petroleum Science》 SCIE EI CAS CSCD 2024年第3期1569-1583,共15页
With the successful application and breakthrough of deep learning technology in image segmentation,there has been continuous development in the field of seismic facies interpretation using convolutional neural network... With the successful application and breakthrough of deep learning technology in image segmentation,there has been continuous development in the field of seismic facies interpretation using convolutional neural networks.These intelligent and automated methods significantly reduce manual labor,particularly in the laborious task of manually labeling seismic facies.However,the extensive demand for training data imposes limitations on their wider application.To overcome this challenge,we adopt the UNet architecture as the foundational network structure for seismic facies classification,which has demonstrated effective segmentation results even with small-sample training data.Additionally,we integrate spatial pyramid pooling and dilated convolution modules into the network architecture to enhance the perception of spatial information across a broader range.The seismic facies classification test on the public data from the F3 block verifies the superior performance of our proposed improved network structure in delineating seismic facies boundaries.Comparative analysis against the traditional UNet model reveals that our method achieves more accurate predictive classification results,as evidenced by various evaluation metrics for image segmentation.Obviously,the classification accuracy reaches an impressive 96%.Furthermore,the results of seismic facies classification in the seismic slice dimension provide further confirmation of the superior performance of our proposed method,which accurately defines the range of different seismic facies.This approach holds significant potential for analyzing geological patterns and extracting valuable depositional information. 展开更多
关键词 Seismic facies interpretation dilated convolution Spatial pyramid pooling Internal feature maps Compound loss function
下载PDF
多尺度特征金字塔融合的街景图像语义分割
2
作者 曲海成 王莹 +1 位作者 董康龙 刘万军 《计算机系统应用》 2024年第3期73-84,共12页
针对街景图像语义分割任务中的目标尺寸差异大、多尺度特征难以高效提取的问题,本文提出了一种语义分割网络(LDPANet).首先,将空洞卷积与引入残差学习单元的深度可分离卷积结合,来优化编码器结构,在降低了计算复杂度的同时缓解梯度消失... 针对街景图像语义分割任务中的目标尺寸差异大、多尺度特征难以高效提取的问题,本文提出了一种语义分割网络(LDPANet).首先,将空洞卷积与引入残差学习单元的深度可分离卷积结合,来优化编码器结构,在降低了计算复杂度的同时缓解梯度消失的问题.然后利用层传递的迭代空洞空间金字塔,将自顶向下的特征信息依次融合,提高了上下文信息的有效交互能力;在多尺度特征融合之后引入属性注意力模块,使网络抑制冗余信息,强化重要特征.再者,以通道扩展上采样代替双线插值上采样作为解码器,进一步提升了特征图的分辨率.最后,LDPANet方法在Cityscapes和CamVid数据集上的精度分别达到了91.8%和87.52%,与近几年网络模型相比,本文网络模型可以精确地提取像素的位置信息以及空间维度信息,提高了语义分割的准确率. 展开更多
关键词 语义分割 MDSDC IDCP-LC 属性注意力 通道扩展上采样 特征融合
下载PDF
轻量化沥青路面裂缝图像分割网络PIPNet
3
作者 封筠 毕健康 +1 位作者 霍一儒 李家宽 《计算机应用》 CSCD 北大核心 2024年第5期1520-1526,共7页
裂缝分割是对路面病害损坏程度评估的重要前提,为平衡深度神经网络分割的有效性与实时性,提出一种基于U-Net编码-解码结构的轻量化沥青路面裂缝图像分割网络PIPNet(Parallel dilated convolution of Inverted Pyramid Network)。编码部... 裂缝分割是对路面病害损坏程度评估的重要前提,为平衡深度神经网络分割的有效性与实时性,提出一种基于U-Net编码-解码结构的轻量化沥青路面裂缝图像分割网络PIPNet(Parallel dilated convolution of Inverted Pyramid Network)。编码部分为倒金字塔结构,提出了具有不同空洞率的多分支并行空洞卷积模块,结合深度可分离卷积和普通卷积,逐级减少并行卷积的个数,对表层、中层及底层特征提取多尺度信息并降低模型复杂度;同时借鉴GhostNet特点,设计了逆残差轻量化模块,嵌入并行双池化注意力。在GAPs384数据集上的测试结果表明,PIPNet在参数量(Params)和计算量(MFLOPs)仅为ResNet50编码近1/6的情况下,平均交并比(mIoU)提高了1.10个百分点,且较轻量化GhostNet和SegNet分别高出4.14与9.95个百分点。实验结果表明,PIPNet在降低模型复杂度的同时,有着较好的裂缝分割性能,且对不同路面裂缝图像分割适应性良好。 展开更多
关键词 沥青路面图像 裂缝分割 轻量化神经网络 倒金字塔结构 并行空洞卷积
下载PDF
融合多尺度特征的遮挡番茄病害图像识别研究
4
作者 黄晓宇 张聪 陈晓玲 《中国农机化学报》 北大核心 2024年第7期194-200,共7页
针对复杂环境下因叶片重叠遮挡以及目标较小等原因而导致番茄病害识别准确率较低的问题,提出一种多尺度级联模型(IMS-Cascade)。该模型以级联神经网络(Cascade R-CNN)为基础,在主干网络中引入融合上下文信息的可切换空洞卷积,使用复杂... 针对复杂环境下因叶片重叠遮挡以及目标较小等原因而导致番茄病害识别准确率较低的问题,提出一种多尺度级联模型(IMS-Cascade)。该模型以级联神经网络(Cascade R-CNN)为基础,在主干网络中引入融合上下文信息的可切换空洞卷积,使用复杂的多尺度卷积核提取目标特征,解决同种病害因叶片遮挡而形状差异较大的问题,并在特征融合网络中添加反馈连接模块,使模型可以进行多次的特征提取,提高浅层信息的利用率。最后在损失函数上增大准确样本的梯度,降低异常样本对模型的影响。将该模型用于Plant Village公开发表的部分番茄叶病害数据集上,mAP达到89.1%,平均准确率达到99.36%,分别比原始Cascade R-CNN模型提高2.5%和1.84%,具有更高检测精度,有利于复杂环境下的番茄病害检测。 展开更多
关键词 番茄病害检测 反馈连接 特征金字塔网络 空洞卷积 多尺度
下载PDF
基于U-Net和特征金字塔网络的秸秆覆盖率计算方法 被引量:5
5
作者 马钦 万传峰 +2 位作者 卫建 汪玮韬 吴才聪 《农业机械学报》 EI CAS CSCD 北大核心 2023年第1期224-234,共11页
针对田间秸秆覆盖分散、秸秆形态多样,细碎秸秆识别困难,传统图像识别方法易受光照、阴影等因素干扰等问题,本文以黑龙江省齐齐哈尔市龙江县为研究地点,构建田间秸秆图像数据集;对图像进行裁剪、标注后,构建了以U-Net为基础网络的秸秆... 针对田间秸秆覆盖分散、秸秆形态多样,细碎秸秆识别困难,传统图像识别方法易受光照、阴影等因素干扰等问题,本文以黑龙江省齐齐哈尔市龙江县为研究地点,构建田间秸秆图像数据集;对图像进行裁剪、标注后,构建了以U-Net为基础网络的秸秆检测模型。将编码阶段的网络结构换成ResNet34的前4层作为特征提取器,增加模型的复杂度,增强秸秆特征的提取;为增强秸秆边缘识别,在最高语义信息层对深层特征图使用多分支非对称空洞卷积块(Multibranch asymmetric dilated convolutional block, MADC Block)提取多尺度的图像特征;为增加细碎秸秆的检测能力,在跳跃连接阶段使用密集特征图金字塔网络(Dense feature pyramid networks, DFPN)进行低层特征图和高层特征图的信息融合,利用特征图对应秸秆图像中感受野的不同,解决秸秆形态多样的问题;为避免秸秆特征图在上采样时的无效计算,解码阶段使用快速上卷积块(Fast up-convolution block, FUC Block)进行上采样,避免秸秆特征图在上采样时的无效计算。试验表明,本文算法在车载相机采集到的秸秆图像数据集上平均交并比为84.78%,相比U-Net提高2.59个百分点,该网络对于640像素×480像素的图像平均处理时间低于3 ms,符合作业检测时的时间复杂度要求,算法在一定程度上改善了阴影区域秸秆的识别问题,提高了细碎秸秆的识别能力。 展开更多
关键词 秸秆检测 计算机视觉 非对称空洞卷积 特征图金字塔网络
下载PDF
结合全局注意力机制的实时语义分割网络 被引量:3
6
作者 李涛 高志刚 +2 位作者 管晟媛 徐久成 马媛媛 《智能系统学报》 CSCD 北大核心 2023年第2期282-292,共11页
针对轻量化网络结构从特征图提取有效语义信息不足,以及语义信息与空间细节信息融合模块设计不合理而导致分割精度降低的问题,本文提出一种结合全局注意力机制的实时语义分割网络(global attention mechanism with real time semantic s... 针对轻量化网络结构从特征图提取有效语义信息不足,以及语义信息与空间细节信息融合模块设计不合理而导致分割精度降低的问题,本文提出一种结合全局注意力机制的实时语义分割网络(global attention mechanism with real time semantic segmentation network,GaSeNet)。首先在双分支结构的语义分支中引入全局注意力机制,在通道与空间两个维度引导卷积神经网来关注与分割任务相关的语义类别,以提取更多有效语义信息;其次在空间细节分支设计混合空洞卷积块,在卷积核大小不变的情况下扩大感受野,以获取更多全局空间细节信息,弥补关键特征信息损失。然后重新设计特征融合模块,引入深度聚合金塔池化,将不同尺度的特征图深度融合,从而提高网络的语义分割性能。最后将所提出的方法在CamVid数据集和Vaihingen数据集上进行实验,通过与最新的语义分割方法对比分析可知,GaSeNet在分割精度上分别提高了4.29%、16.06%,实验结果验证了本文方法处理实时语义分割问题的有效性。 展开更多
关键词 实时语义分割 全局注意力机制 多尺度特征融合 混合空洞卷积 卷积神经网络 金字塔池化 感受野 特征提取
下载PDF
基于改进的DeepLabv3+图像语义分割算法研究 被引量:1
7
作者 赵为平 陈雨 +2 位作者 项松 刘远强 王超越 《系统仿真学报》 CAS CSCD 北大核心 2023年第11期2333-2344,共12页
目前主流图像语义分割网络往往存在误分割、分割不连续和模型复杂度高的问题,不能灵活高效地部署于实际场景中。针对这一现象,通过综合考虑网络的参数量、预测时间和准确度,设计出一种优化DeepLabv3+模型的图像语义分割网络。骨干网络... 目前主流图像语义分割网络往往存在误分割、分割不连续和模型复杂度高的问题,不能灵活高效地部署于实际场景中。针对这一现象,通过综合考虑网络的参数量、预测时间和准确度,设计出一种优化DeepLabv3+模型的图像语义分割网络。骨干网络改用轻量级EfficientNetv2网络提取特征,提高参数利用率;在空洞空间金字塔池化模块中使用混合条带池化模块代替全局平均池化,引入深度可分离膨胀卷积,减少参数量和提高学习多尺度信息的能力;使用注意力机制增强模型表征力,提取骨干网络多条浅层特征,丰富图像的几何细节信息。实验表明,本文算法可达到mIoU为81.19%,参数量为55.51×106,有效优化了分割精度和模型复杂度,同时也提高了模型泛化性。 展开更多
关键词 DeepLabv3+ 图像语义分割 空洞空间金字塔池化 注意力机制 深度可分离膨胀卷积
下载PDF
基于反馈机制与空洞卷积的道路小目标检测网络 被引量:5
8
作者 窦允冲 侯进 +1 位作者 曾雷鸣 陈子锐 《计算机工程》 CAS CSCD 北大核心 2023年第1期287-294,共8页
随着卷积神经网络与特征金字塔的发展,目标检测在大、中目标上取得了突破,但对于小目标存在漏检、检测精度低等问题。在YOLOv4算法的基础上进行改进,提出YOLOv4-RF算法,进一步提高模型对小目标的检测性能。使用空洞卷积替换YOLOv4中Nec... 随着卷积神经网络与特征金字塔的发展,目标检测在大、中目标上取得了突破,但对于小目标存在漏检、检测精度低等问题。在YOLOv4算法的基础上进行改进,提出YOLOv4-RF算法,进一步提高模型对小目标的检测性能。使用空洞卷积替换YOLOv4中Neck部分的池化金字塔,在网络更深处减少语义丢失的同时获得更大的感受野。在此基础上,对主干网络进行轻量化并增加特征金字塔到主干网络的反馈机制,对来自浅层与深层融合的特征再次处理,保留更多小目标的特征信息,提高网络分类和定位的有效性。鉴于小目标物体属于困难检测样本,引入Focal Loss损失函数,增大困难样本的损失权重,形成YOLOv4-RF算法。在KITTI数据集上的实验数据表明,YOLOv4-RF在各个类别上的检测精度均高于YOLOv4,并在模型缩小138 MB的基础上提高了1.4%的平均精度均值(MAP@0.5)。 展开更多
关键词 小目标检测 YOLOv4算法 空洞卷积 反馈机制 递归特征金字塔
下载PDF
基于多尺度特征融合的细胞计数方法 被引量:1
9
作者 张倩 王夏黎 +2 位作者 王炜昊 武历展 李超 《图学学报》 CSCD 北大核心 2023年第1期41-49,共9页
细胞计数一直是医学影像分析中非常重要的一项工作,在生物医学实验和临床医学等领域起着十分关键的作用。针对细胞计数工作中存在的由细胞尺寸变化等因素造成的细胞计数精度低的问题,引入高度拥挤目标识别网络CSRNet并加以改进,构建了... 细胞计数一直是医学影像分析中非常重要的一项工作,在生物医学实验和临床医学等领域起着十分关键的作用。针对细胞计数工作中存在的由细胞尺寸变化等因素造成的细胞计数精度低的问题,引入高度拥挤目标识别网络CSRNet并加以改进,构建了一种基于多尺度特征融合的细胞计数方法。首先,使用VGG16的前10层提取细胞特征,避免了由于网络过深造成的小目标信息丢失;其次,引入空间金字塔池化结构提取细胞的多尺度特征并进行特征融合,降低了因细胞形态各异、尺寸不一和细胞遮挡等问题带来的计数误差;然后,使用混合空洞卷积对特征图进行解码,得到密度图,解决了CSRNet在解码过程中像素遗漏的问题;最后对密度图逐像素进行回归得到细胞总数。另外,在训练过程中引入了一种新的组合损失函数以代替欧几里得损失函数,不仅考虑了groundtruth密度图与预测密度图单个像素点之间的关系,还考虑了其全局和局部的密度水平。实验证明,优化后的CSRNet在VGG cells和MBM cells数据集上取得了较好的结果,有效改善了由细胞尺寸变化等因素造成的细胞计数精度低的问题。 展开更多
关键词 细胞计数 多尺度特征融合 密度估计 空间金字塔池化 混合空洞卷积
下载PDF
A Model for Helmet-Wearing Detection of Non-Motor Drivers Based on YOLOv5s 被引量:2
10
作者 Hongyu Lin Feng Jiang +3 位作者 Yu Jiang Huiyin Luo Jian Yao Jiaxin Liu 《Computers, Materials & Continua》 SCIE EI 2023年第6期5321-5336,共16页
Detecting non-motor drivers’helmets has significant implications for traffic control.Currently,most helmet detection methods are susceptible to the complex background and need more accuracy and better robustness of s... Detecting non-motor drivers’helmets has significant implications for traffic control.Currently,most helmet detection methods are susceptible to the complex background and need more accuracy and better robustness of small object detection,which are unsuitable for practical application scenar-ios.Therefore,this paper proposes a new helmet-wearing detection algorithm based on the You Only Look Once version 5(YOLOv5).First,the Dilated convolution In Coordinate Attention(DICA)layer is added to the backbone network.DICA combines the coordinated attention mechanism with atrous convolution to replace the original convolution layer,which can increase the perceptual field of the network to get more contextual information.Also,it can reduce the network’s learning of unnecessary features in the background and get attention to small objects.Second,the Rebuild Bidirectional Feature Pyramid Network(Re-BiFPN)is used as a feature extraction network.Re-BiFPN uses cross-scale feature fusion to combine the semantic information features at the high level with the spatial information features at the bottom level,which facilitates the model to learn object features at different scales.Verified on the proposed“Helmet Wearing dataset for Non-motor Drivers(HWND),”the results show that the proposed model is superior to the current detection algorithms,with the mean average precision(mAP)of 94.3%under complex background. 展开更多
关键词 Helmet-wearing detection dilated convolution feature pyramid network feature fusion
下载PDF
一种改进的tiny YOLO v3煤矸石快速识别模型 被引量:6
11
作者 郑道能 《工矿自动化》 CSCD 北大核心 2023年第4期113-119,共7页
传统的煤矸石分选方法效率低下、安全隐患较大、应用范围受限,现有的基于机器视觉的煤矸石图像识别方法在模型识别速度与精度上难以平衡,未综合考虑输入图像尺寸不一、重要通道权重较低及卷积参数量大对模型精度的影响。针对上述问题,在... 传统的煤矸石分选方法效率低下、安全隐患较大、应用范围受限,现有的基于机器视觉的煤矸石图像识别方法在模型识别速度与精度上难以平衡,未综合考虑输入图像尺寸不一、重要通道权重较低及卷积参数量大对模型精度的影响。针对上述问题,在tiny YOLO v3模型的基础上,提出了一种改进的tiny YOLO v3煤矸石快速识别模型。首先,在tiny YOLO v3模型引入多卷积核组合池化的特征金字塔池化(SPP)网络,确保输入特征图可被处理为固定尺寸再输出;其次,引入RGB通道权重可调节的压缩激励(SE)模块,用于增强前几层特征图各通道之间的联系,强调感兴趣通道的特征值和不同目标特征之间的差异性,确保关键信息的捕捉和网络灵敏度;最后,引入包含0权值点的空洞卷积替代tiny YOLO v3模型中部分卷积层,在不增加模型参数的前提下,可捕获多尺度上下文信息进而扩大感受野,提高模型计算速度。将该模型分别与tiny YOLO v3模型、Faster RCNN模型、YOLO v5系列模型进行对比,结果表明:(1)与tiny YOLO v3相比,改进的tiny YOLO v3煤矸石快速识别模型的识别准确性和快速性都有显著提升。(2)与Faster RCNN相比,改进的tiny YOLO v3煤矸石快速识别模型训练时间减少了65.72%,识别精度增幅为11.83%,识别召回率增幅为0.5%,模型平均精度均值(m AP)增幅为3.02%。(3)与YOLO系列模型相比,改进的tiny YOLO v3煤矸石快速识别模型在保持识别精度优势的情况下识别速度有大幅增长。消融实验结果表明:改进的tiny YOLO v3煤矸石快速识别模型的识别准确率为99.4%,较加入SPP网络的tiny YOLO v3模型的识别准确率提高了4.9%;测试每张图片耗时12.5 ms,较加入SPP网络的tiny YOLO v3模型耗时减少了1 ms。 展开更多
关键词 煤矸石分选 煤矸石图像识别 特征金字塔池化 压缩激励模块 空洞卷积 tiny YOLO v3
下载PDF
基于改进YOLOX的草莓检测算法 被引量:1
12
作者 杨小健 陶青川 《现代计算机》 2023年第6期11-18,共8页
针对机械臂自动采摘草莓任务场景提出了一种基于改进YOLOX的草莓检测算法。使用MobileNetV3重新构建YOLOX的主干网;引入ASPP获取多尺度特征,并使用深度可分离卷积取代ASPP中的普通卷积以降低引入ASPP带来的计算量提升;对主干网输出的三... 针对机械臂自动采摘草莓任务场景提出了一种基于改进YOLOX的草莓检测算法。使用MobileNetV3重新构建YOLOX的主干网;引入ASPP获取多尺度特征,并使用深度可分离卷积取代ASPP中的普通卷积以降低引入ASPP带来的计算量提升;对主干网输出的三个不同尺度特征分别使用ECA注意力机制提高检测精度。实验表明,改进模型的参数量下降了68%,并保证了精度不损失,适于部署到算力较低的边缘设备。 展开更多
关键词 YOLOX MobileNetV3 空间金字塔池化 空洞卷积 注意力机制
下载PDF
基于空洞空间金字塔池化U-Net的遥感图像多目标检测方法 被引量:1
13
作者 张善文 许新华 齐国红 《弹箭与制导学报》 北大核心 2023年第5期1-8,共8页
针对遥感图像(RSI)中的目标相对较小、形变多样,且包含分布不均匀的非目标和背景等问题,提出一种基于空洞空间金字塔池化U-Net的遥感图像多目标检测方法。该方法利用空洞多尺度卷积提取多尺度目标的分类特征,运用空洞空间池化金字塔模... 针对遥感图像(RSI)中的目标相对较小、形变多样,且包含分布不均匀的非目标和背景等问题,提出一种基于空洞空间金字塔池化U-Net的遥感图像多目标检测方法。该方法利用空洞多尺度卷积提取多尺度目标的分类特征,运用空洞空间池化金字塔模块扩大卷积特征图的感受野,提取更充分的目标特征,并采用注意力机制、残差连接和长跳跃连接充分保留卷积层提取的RSI的敏感特征。在公开遥感图像数据库EORSSD上的实验结果表明,所提出的方法能够从复杂多样的RSI中检测多尺度目标,检测精度为96.56%。 展开更多
关键词 遥感图像多目标检测 空洞多尺度卷积 空洞空间金字塔池化 空洞空间金字塔池化U-Net
下载PDF
改进空洞卷积在自动驾驶任务中的应用研究
14
作者 杨益 孙桂玲 +1 位作者 郑博文 张莹钰 《无线通信技术》 2023年第2期1-5,10,共6页
空洞卷积在深度学习任务中应用广泛,能节省计算资源。但由于卷积核中插入了空值点,可能导致局部信息丢失,在图像处理任务中会破坏信息的连续性和位置信息。本文基于空洞卷积理论,优化了空洞卷积结构,避免了局部信息丢失,提升了在恶劣天... 空洞卷积在深度学习任务中应用广泛,能节省计算资源。但由于卷积核中插入了空值点,可能导致局部信息丢失,在图像处理任务中会破坏信息的连续性和位置信息。本文基于空洞卷积理论,优化了空洞卷积结构,避免了局部信息丢失,提升了在恶劣天气情况下自动驾驶汽车的预判交通事故风险的能力。经实验验证,本文优化的神经网络模型提升了训练效率、节省了计算资源,同时比传统方法提升了可驾驶区域分割的准确性和盲区车辆的轨迹预测准确性。 展开更多
关键词 自动驾驶 空洞卷积 金字塔 深度学习 事故预判
下载PDF
DTCC:Multi-level dilated convolution with transformer for weakly-supervised crowd counting
15
作者 Zhuangzhuang Miao Yong Zhang +2 位作者 Yuan Peng Haocheng Peng Baocai Yin 《Computational Visual Media》 SCIE EI CSCD 2023年第4期859-873,共15页
Crowd counting provides an important foundation for public security and urban management.Due to the existence of small targets and large density variations in crowd images,crowd counting is a challenging task.Mainstre... Crowd counting provides an important foundation for public security and urban management.Due to the existence of small targets and large density variations in crowd images,crowd counting is a challenging task.Mainstream methods usually apply convolution neural networks(CNNs)to regress a density map,which requires annotations of individual persons and counts.Weakly-supervised methods can avoid detailed labeling and only require counts as annotations of images,but existing methods fail to achieve satisfactory performance because a global perspective field and multi-level information are usually ignored.We propose a weakly-supervised method,DTCC,which effectively combines multi-level dilated convolution and transformer methods to realize end-to-end crowd counting.Its main components include a recursive swin transformer and a multi-level dilated convolution regression head.The recursive swin transformer combines a pyramid visual transformer with a fine-tuned recursive pyramid structure to capture deep multi-level crowd features,including global features.The multi-level dilated convolution regression head includes multi-level dilated convolution and a linear regression head for the feature extraction module.This module can capture both low-and high-level features simultaneously to enhance the receptive field.In addition,two regression head fusion mechanisms realize dynamic and mean fusion counting.Experiments on four well-known benchmark crowd counting datasets(UCF_CC_50,ShanghaiTech,UCF_QNRF,and JHU-Crowd++)show that DTCC achieves results superior to other weakly-supervised methods and comparable to fully-supervised methods. 展开更多
关键词 crowd counting TRANSFORMER dilated convolution global perspective field pyramid
原文传递
用于咽喉器官分割的空洞残差金字塔算法
16
作者 潘晓英 白伟栋 +2 位作者 代栋 王红玉 马晨阳 《计算机辅助设计与图形学学报》 EI CSCD 北大核心 2023年第7期1000-1009,共10页
对咽喉器官分割是喉镜图像分析以及计算机辅助诊疗的先决条件.为准确地分割器官部位,提出一种用于咽喉器官分割的空洞残差金字塔算法.首先提出空洞残差(dilated residual,DR)模块,使用多种空洞卷积提取图像不同感受野下的特征,结合残差... 对咽喉器官分割是喉镜图像分析以及计算机辅助诊疗的先决条件.为准确地分割器官部位,提出一种用于咽喉器官分割的空洞残差金字塔算法.首先提出空洞残差(dilated residual,DR)模块,使用多种空洞卷积提取图像不同感受野下的特征,结合残差策略提升特征多样性并加快网络训练速度;然后将DR模块与特征金字塔结合,融合多尺度特征并补充器官浅层特征,使得网络适应器官的多种形态;最后设计咽喉器官分割网络——DRP-Mask.在8000幅喉镜图像数据集上的实验结果表明,与其他5种语义分割网络相比,DRP-Mask的平均交并比提升2%~4%,比基准网络平均精度提升1.6%,实现对器官准确定位的同时也对其进行完整的分割,分割结果更贴合医生标注结果. 展开更多
关键词 多器官分割 空洞卷积 残差连接 特征金字塔
下载PDF
基于PDSSD改进型神经网络的小目标检测算法 被引量:6
17
作者 王鹏 陆振宇 +2 位作者 詹天明 戴玉亮 芦佳 《计算机应用与软件》 北大核心 2021年第1期149-156,191,共9页
SSD卷积神经网络一直对较小目标检测精度不佳。对此在SSD网络结构的基础上引入空洞卷积(Dilated Convolution),并组建空洞金字塔模块(Pyramid Dilated Convolution)和特征空洞金字塔模块(Feature Pyramid Dilated Convolution)融入SSD中... SSD卷积神经网络一直对较小目标检测精度不佳。对此在SSD网络结构的基础上引入空洞卷积(Dilated Convolution),并组建空洞金字塔模块(Pyramid Dilated Convolution)和特征空洞金字塔模块(Feature Pyramid Dilated Convolution)融入SSD中,提升了网络浅层特征层的语义信息,提高了深层特征层的感受野和特征提取能力,构建了新型网络结构Pyramid Dilated SSD(PDSSD)。实验结果表明,PDSSD在PASCAL-VOC数据集上的检测mAP(Mean Average Precision)值高达82.1%,检测精度和小目标检测能力明显高于SSD,并且网络训练速度和mAP值领先于其他主流算法。 展开更多
关键词 目标检测 PDSSD 空洞卷积 空洞金字塔 特征空洞金字塔
下载PDF
共享核空洞卷积与注意力引导FPN文本检测 被引量:4
18
作者 孟月波 金丹 +3 位作者 刘光辉 徐胜军 韩九强 石德旺 《光学精密工程》 EI CAS CSCD 北大核心 2021年第8期1955-1967,共13页
高分辨率图像具有特征尺度差异较大的特点,针对其造成的细粒度特征难以捕获、多尺度特征融合不佳问题,提出一种共享核空洞卷积与注意力引导(Kernel-Sharing Dilated Convolutions and Attention-guided FPN,KDA-FPN)的复杂场景文本检测... 高分辨率图像具有特征尺度差异较大的特点,针对其造成的细粒度特征难以捕获、多尺度特征融合不佳问题,提出一种共享核空洞卷积与注意力引导(Kernel-Sharing Dilated Convolutions and Attention-guided FPN,KDA-FPN)的复杂场景文本检测方法;提出最小交集(Intersection Over Minimum,IOM)后处理策略,改善因文本长宽比变化较大特性导致的掩膜重叠现象,提升检测效果。首先,模型以Resnet50为主干网络采用FPN结构捕获多尺度特征;然后,利用空洞卷积扩大特征感受野,提高特征信息的多尺度捕获能力,深层次挖掘文本细粒度特征,并通过共享核手段减少模型参数量,降低计算成本;同时,采用上下文注意模块(Context Attention Module,CxAM)捕捉多感受野间的语义信息关系,通过内容注意模块(Content Attention Module,CnAM)精确定位目标位置信息,增强多尺度融合能力,提升特征图质量;最后,将同一文本区域预测的候选框按大小排列,提出将面积最大的框与相邻文本框之间区域的交集面积占较小框面积的比值作为候选框筛选指标,抑制检测结果的掩模重叠现象,实现文本的精准检测。采用ICDAR2013、ICDAR2015、TotalText数据集进行对比实验,实验结果表明,本文模型对于水平场景文本检测的精度和召回率分别为95.3和90.4;对于倾斜文本检测的精度和召回率分别为87.1和84.2;对于任意形状文本检测的精度和召回率分别为69.6和57.3。提出的算法有效克服了图像分辨率、文本形状与长度等因素的影响,提高了检测精度,得到了更为精准的文本边界。 展开更多
关键词 文本检测 注意力结构 共享核空洞卷积 特征金字塔网络
下载PDF
多尺度空洞卷积金字塔网络建筑物提取 被引量:5
19
作者 张春森 刘恒恒 +2 位作者 葛英伟 史书 张觅 《西安科技大学学报》 CAS 北大核心 2021年第3期490-497,574,共9页
为改善现有深度学习方法获取图像特征尺度单一、提取精度较低等问题,提出多尺度空洞卷积金字塔网络建筑物提取方法。多尺度空洞卷积金字塔网络以U-Net为基础模型,编码-解码阶段采用空洞卷积替换普通卷积扩大感受野,使得每个卷积层输出... 为改善现有深度学习方法获取图像特征尺度单一、提取精度较低等问题,提出多尺度空洞卷积金字塔网络建筑物提取方法。多尺度空洞卷积金字塔网络以U-Net为基础模型,编码-解码阶段采用空洞卷积替换普通卷积扩大感受野,使得每个卷积层输出包含比普通卷积更大范围的特征信息,以利于获取遥感影像中建筑物特征的全局信息,金字塔池化模块结合U-Net跳跃连接结构整合多尺度的特征,以获取高分辨率全局整体信息及低分辨率局部细节信息。在WHU数据集上进行提取实验,交并比达到了91.876%,相比其他语义分割网络交并比提升4.547%~10.826%,在Inria数据集上进行泛化实验,泛化精度高于其他网络。结果表明所提出的空洞卷积金字塔网络提取精度高,泛化能力强,且在不同尺度建筑物提取上具有良好的适应性。 展开更多
关键词 建筑物提取 多尺度 空洞卷积 金字塔池化
下载PDF
基于局部生成对抗网络的水上低照度图像增强 被引量:3
20
作者 刘文 杨梅芳 +3 位作者 聂江天 章阳 杨和林 熊泽辉 《计算机工程》 CAS CSCD 北大核心 2021年第5期16-23,共8页
针对低照度条件下获取的水上图像亮度和对比度低以及质量差的问题,提出一种基于局部生成对抗网络的图像增强方法。以残差网络作为基本框架设计生成器,通过加入金字塔扩张卷积模块提取与学习图像深层特征和多尺度空间特征,从而减少结构... 针对低照度条件下获取的水上图像亮度和对比度低以及质量差的问题,提出一种基于局部生成对抗网络的图像增强方法。以残差网络作为基本框架设计生成器,通过加入金字塔扩张卷积模块提取与学习图像深层特征和多尺度空间特征,从而减少结构信息丢失。设计一个自编码器作为注意力网络,估计图像中的光照分布并指导图像不同亮度区域的自适应增强。构建具有判别图像局部区域能力的判别器结构,约束生成器输出增强效果更加自然的图像。实验结果表明,该方法能够有效增强水上低照度图像,场景还原和细节保留能力优于SRIE和LIME等方法。 展开更多
关键词 低照度图像增强 深度学习 生成对抗网络 金字塔扩张卷积 自适应增强
下载PDF
上一页 1 2 下一页 到第
使用帮助 返回顶部