Anatomy of the thyroid has been extensively studied but the presence of pyramidal lobe varies in percentages from 15% to 75% of cases according to different authors. We therefore investigated systematically this pecul...Anatomy of the thyroid has been extensively studied but the presence of pyramidal lobe varies in percentages from 15% to 75% of cases according to different authors. We therefore investigated systematically this peculiar anatomical aspect. From January 2001 to December 2011, 1002 patients underwent total thyroidectomy in our Division of General Surgery. We analyzed the data collected on the latest 200 thyroidectomies: for all patients pyramidal lobe was measured at removal of the specimen then dimension of the pyramidal lobe after fixation was checked. We found the pyramidal lobe in all cases. In most cases, it was approximately 2 cm (range 1 - 8 cm on fresh specimen). At histology it was described in 72% of cases, after fixation size decreased by a third approximatively. This is the first systematic intraoperative study to verify the prevalence of the thyroid pyramidal lobe. In our experience, the pyramidal lobe is always present and the thyroglossal duct is identifiable.展开更多
OBJECTIVE To understand the underlying mechanisms of drug resistant temporal lobe epilepsy(TLE).METHODS In vivo and vitro electrophysiology,optogenetics and chemogenetics were used in a classic multi-drug resistant TL...OBJECTIVE To understand the underlying mechanisms of drug resistant temporal lobe epilepsy(TLE).METHODS In vivo and vitro electrophysiology,optogenetics and chemogenetics were used in a classic multi-drug resistant TLE model.RESULTS Subicular pyramidal neuron activity was not inhibited by the anti-epileptic drug phenytoin in drug resistant rats.This phenomenon was specific to the subiculum,but did not involve surrounding temporal lobe regions.Selective inhibition of subicular pyramidal neurons by both optogenetics and chemogenetics reversed drug resistance.In contrast,selective activation of subicular pyramidal neurons directly induced drug resistance in drug responsive rats.Furthermore,long-term low frequency stimulation at the subiculum,which is clinically feasible,inhibited the activity of subicular pyramidal neurons and reversed drug resistance.CONCLUSION Subicular pyramidal neurons might be a key ″ switch″ mediating drug resistance in TLE and represent a new potential target for more precise treatment of drug resistant TLE.展开更多
文摘Anatomy of the thyroid has been extensively studied but the presence of pyramidal lobe varies in percentages from 15% to 75% of cases according to different authors. We therefore investigated systematically this peculiar anatomical aspect. From January 2001 to December 2011, 1002 patients underwent total thyroidectomy in our Division of General Surgery. We analyzed the data collected on the latest 200 thyroidectomies: for all patients pyramidal lobe was measured at removal of the specimen then dimension of the pyramidal lobe after fixation was checked. We found the pyramidal lobe in all cases. In most cases, it was approximately 2 cm (range 1 - 8 cm on fresh specimen). At histology it was described in 72% of cases, after fixation size decreased by a third approximatively. This is the first systematic intraoperative study to verify the prevalence of the thyroid pyramidal lobe. In our experience, the pyramidal lobe is always present and the thyroglossal duct is identifiable.
基金National Natural Science Foundation of China(91332202,81630098,81521062,81671282,81703480).
文摘OBJECTIVE To understand the underlying mechanisms of drug resistant temporal lobe epilepsy(TLE).METHODS In vivo and vitro electrophysiology,optogenetics and chemogenetics were used in a classic multi-drug resistant TLE model.RESULTS Subicular pyramidal neuron activity was not inhibited by the anti-epileptic drug phenytoin in drug resistant rats.This phenomenon was specific to the subiculum,but did not involve surrounding temporal lobe regions.Selective inhibition of subicular pyramidal neurons by both optogenetics and chemogenetics reversed drug resistance.In contrast,selective activation of subicular pyramidal neurons directly induced drug resistance in drug responsive rats.Furthermore,long-term low frequency stimulation at the subiculum,which is clinically feasible,inhibited the activity of subicular pyramidal neurons and reversed drug resistance.CONCLUSION Subicular pyramidal neurons might be a key ″ switch″ mediating drug resistance in TLE and represent a new potential target for more precise treatment of drug resistant TLE.