期刊文献+
共找到932篇文章
< 1 2 47 >
每页显示 20 50 100
Importance of oxygen-containing functionalities and pore structures of biochar in catalyzing pyrolysis of homologous poplar 被引量:1
1
作者 Li Qiu Chao Li +6 位作者 Shu Zhang Shuang Wang Bin Li Zhenhua Cui Yonggui Tang Obid Tursunov Xun Hu 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2024年第1期200-211,共12页
Biochar and bio-oil are produced simultaneously in one pyrolysis process,and they inevitably contact and may interact,influencing the composition of bio-oil and modifying the structure of biochar.In this sense,biochar... Biochar and bio-oil are produced simultaneously in one pyrolysis process,and they inevitably contact and may interact,influencing the composition of bio-oil and modifying the structure of biochar.In this sense,biochar is an inherent catalyst for pyrolysis.In this study,in order to investigate the influence of functionalities and pore structures of biochar on its capability for catalyzing the conversion of homologous volatiles in bio-oil,three char catalysts(600C,800C,and 800AC)produced via pyrolysis of poplar wood at 600 or 800℃or activated at 800℃,were used for catalyzing pyrolysis of homologous poplar wood at 600℃,respectively.The results indicated that the 600C catalyst was more active than 800C and 800AC for catalyzing cracking of volatiles to form more gas(yield increase by 40.2%)and aromatization of volatiles to form more light or heavy phenolics,due to its abundant oxygen-containing functionalities acting as active sites.The developed pores of the 800AC showed no such catalytic effect but could trap some volatiles and allow their further conversion via sufficient aromatization.Nevertheless,the interaction with the volatiles consumed oxygen on 600C(decrease by 50%),enhancing the aromatic degree and increasing thermal stability.The dominance of deposition of carbonaceous material of a very aromatic nature over 800C and 800AC resulted in net weight gain and blocked micropores but formed additional macropores.The in situ diffuse reflectance infrared Fourier transform spectroscopy characterization of the catalytic pyrolysis indicated superior activity of 600C for removal of -OH,while conversion of the intermediates bearing C=O was enhanced over all the char catalysts. 展开更多
关键词 Poplar wood Catalytic pyrolysis Char catalyst Volatile-char interaction BIO-OIL
下载PDF
Particle agglomeration and inhibition method in the fluidized pyrolysis reaction of waste resin 被引量:1
2
作者 Congjing Ren Peng Zhang +3 位作者 Qi Song Zhengliang Huang Yao Yang Yongrong Yang 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2024年第3期135-147,共13页
This work investigated the pyrolysis reaction of waste resin in a fluidized bed reactor.It was found that the pyrolysis-generated ash would adhere to the surface of ceramic particles,causing particle agglomeration and... This work investigated the pyrolysis reaction of waste resin in a fluidized bed reactor.It was found that the pyrolysis-generated ash would adhere to the surface of ceramic particles,causing particle agglomeration and defluidization.Adding kaolin could effectively inhibit the particle agglomeration during the fluidized pyrolysis reaction through physical isolation and chemical reaction.On the one hand,kaolin could form a coating layer on the surface of ceramic particles to prevent the adhesion of organic ash generated by the pyrolysis of resin.On the other hand,when a sufficient amount of kaolin(-0.2%(mass))was added,the activated kaolin could fully contact with the Na+ ions generated by the pyrolysis of resin and react to form a high-melting aluminosilicate mineral(nepheline),which could reduce the formation of low-melting-point sodium sulfate and thereby avoid the agglomeration of ceramic particles. 展开更多
关键词 pyrolysis reaction of waste resin FLUIDIZATION Particle agglomeration KAOLIN
下载PDF
Relationship between hydrogenation degree and pyrolysis performance of jet fuel
3
作者 Qing Liu Tinghao Jia +2 位作者 Lun Pan Jijun Zou Xiangwen Zhang 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2024年第4期35-42,共8页
Understanding the relationship between the chemical composition and pyrolysis performance of endothermic hydrocarbon fuel(EHF) is of great significance for the design and optimization of advanced EHFs. In this work, t... Understanding the relationship between the chemical composition and pyrolysis performance of endothermic hydrocarbon fuel(EHF) is of great significance for the design and optimization of advanced EHFs. In this work, the effect of deep hydrogenation on the pyrolysis of commercial RP-3 is investigated.Fuels with different hydrogenation degrees were obtained by the partially and completely catalytic hydrogenation and their pyrolysis performances were investigated using an apparatus equipped with an electrically heated tubular reactor. The results show that with the increase of hydrogenation degree, fuel conversion almost remains constant during the pyrolysis process(500-650°C, 4 MPa);however, the heat sink increases slightly, and the anti-coking performance significantly improves, which are highly related to their H/C ratios. Detailed characterisations reveal that the difference of the pyrolysis performance can be ascribed to the content of aromatics and cycloalkanes: the former are prone to initiate secondary reactions to form coking precursors, while the latter could act as the hydrogen donor and release hydrogen, which will terminate the radical propagation reactions and suppress the coke deposition. This work should provide the guidance for upgrading EHFs by modulating the composition of EHFs. 展开更多
关键词 RP-3 FUEL pyrolysis HYDROGENATION DEPOSITION
下载PDF
The nitrogen transformation behavior based on the pyrolysis products of wheat straw
4
作者 Shun Guo Yunfei Li +1 位作者 Shengwei Tang Tao Zhang 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2024年第7期58-65,共8页
In order to provide basic design parameters for the industrial pyrolysis process,the transformation behavior of nitrogen was investigated using wheat straw as raw material.The distributions of nitrogen in pyrolysis ch... In order to provide basic design parameters for the industrial pyrolysis process,the transformation behavior of nitrogen was investigated using wheat straw as raw material.The distributions of nitrogen in pyrolysis char,oil,and gas were obtained and the nitrogenous components in the products were analyzed systematically by X-ray photoelectron spectroscopy(XPS),pyrolysis-gas chromatography/mass spectrometry(Py-GC/MS)and thermogravimetric-Fourier transform infrared spectrometry(TG-FTIR).The nitrogen distribution ranges of the pyrolysis char,oil,and gas were 37.34%–54.82%,32.87%–40.94%and 10.20%–28.83%,respectively.More nitrogen was retained in char at lower pyrolysis temperature and the nitrogen distribution of oil was from rise to decline with increasing temperature.The most abundant N-containing compounds in three-phase products were pyrrole-N,amines,and HCN,respectively.In addition,the transformation mechanism of nitrogen from wheat straw to pyrolysis products was concluded. 展开更多
关键词 pyrolysis Nitrogen transformation Wheat straw Py-GC/MS TG-FTIR
下载PDF
Cross-upgrading of biomass hydrothermal carbonization and pyrolysis for high quality blast furnace injection fuel production:Physicochemical characteristics and gasification kinetics analysis
5
作者 Han Dang Runsheng Xu +2 位作者 Jianliang Zhang Mingyong Wang Jinhua Li 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2024年第2期268-281,共14页
The paper proposes a biomass cross-upgrading process that combines hydrothermal carbonization and pyrolysis to produce high-quality blast furnace injection fuel.The results showed that after upgrading,the volatile con... The paper proposes a biomass cross-upgrading process that combines hydrothermal carbonization and pyrolysis to produce high-quality blast furnace injection fuel.The results showed that after upgrading,the volatile content of biochar ranged from 16.19%to 45.35%,and the alkali metal content,ash content,and specific surface area were significantly reduced.The optimal route for biochar pro-duction is hydrothermal carbonization-pyrolysis(P-HC),resulting in biochar with a higher calorific value,C=C structure,and increased graphitization degree.The apparent activation energy(E)of the sample ranges from 199.1 to 324.8 kJ/mol,with P-HC having an E of 277.8 kJ/mol,lower than that of raw biomass,primary biochar,and anthracite.This makes P-HC more suitable for blast furnace injection fuel.Additionally,the paper proposes a path for P-HC injection in blast furnaces and calculates potential environmental benefits.P-HC of-fers the highest potential for carbon emission reduction,capable of reducing emissions by 96.04 kg/t when replacing 40wt%coal injec-tion. 展开更多
关键词 blast furnace injection BIOMASS cross-upgrading hydrothermal carbonization pyrolysis physicochemical properties gasific-ation properties
下载PDF
Effect of long reaction distance on gas composition from organic-rich shale pyrolysis under high-temperature steam environment
6
作者 Lei Wang Rui Zhang +4 位作者 Guoying Wang Jing Zhao Dong Yang Zhiqin Kang Yangsheng Zhao 《International Journal of Coal Science & Technology》 EI CAS CSCD 2024年第3期102-119,共18页
When high-temperature steam is used as a medium to pyrolyze organic-rich shale,water steam not only acts as heat transfer but also participates in the chemical reaction of organic matter pyrolysis,thus affecting the g... When high-temperature steam is used as a medium to pyrolyze organic-rich shale,water steam not only acts as heat transfer but also participates in the chemical reaction of organic matter pyrolysis,thus affecting the generation law and release characteristics of gas products.In this study,based on a long-distance reaction system of organic-rich shale pyrolysis via steam injection,the effects of steam temperature and reaction distance on gas product composition are analyzed in depth and compared with other pyrolysis processes.The advantages of organic-rich shale pyrolysis via steam injection are then evaluated.The volume concentration of hydrogen in the gas product obtained via the steam injection pyrolysis of organic-rich shale is the highest,which is more than 60%.The hydrogen content increases as the reaction distance is extended;however,the rate of increase changes gradually.Increasing the reaction distance from 800 to 4000 mm increases the hydrogen content from 34.91%to 69.68%and from 63.13%to 78.61%when the steam temperature is 500℃ and 555℃,respectively.However,the higher the heat injection temperature,the smaller the reaction distance required to form a high concentration hydrogen pyrolysis environment(hydrogen concentration>60%).When the steam pyrolysis temperature is increased from 500℃ to 555℃,the reaction distance required to form a high concentration of hydrogen is reduced from 3800 to 800 mm.Compared with the direct retorting process,the volume concentration of hydrogen obtained from high-temperature steam pyrolysis of organic-rich shale is 8.82 and 10.72 times that of the commonly used Fushun and Kivite furnaces,respectively.The pyrolysis of organic-rich shale via steam injection is a pyrolysis process in a hydrogen-rich environment. 展开更多
关键词 Steam temperature pyrolysis gas Hydrogen-rich Reaction distance Direct retorting
下载PDF
Spray pyrolysis feasibility of tungsten substitution for cobalt in nickel-rich cathode materials
7
作者 Zihan Hou Lisheng Guo +8 位作者 Xianlong Fu Hongxian Zheng Yuqing Dai Zhixing Wang Hui Duan Mingxia Dong Wenjie Peng Guochun Yan Jiexi Wang 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2024年第10期2244-2252,共9页
Cobalt(Co)serves as a stabilizer in the lattice structure of high-capacity nickel(Ni)-rich cathode materials.However,its high cost and toxicity still limit its development.In general,it is possible to perform transiti... Cobalt(Co)serves as a stabilizer in the lattice structure of high-capacity nickel(Ni)-rich cathode materials.However,its high cost and toxicity still limit its development.In general,it is possible to perform transition metal substitution to reduce the Co content.However,the traditional coprecipitation method cannot satisfy the requirements of multielement coprecipitation and uniform distribution of elements due to the differences between element concentration and deposition rate.In this work,spray pyrolysis was used to prepare LiNi_(0.9)Co_(0.1-x)W_(x)O_(2)(LNCW).In this regard,the pyrolysis behavior of ammonium metatungstate was analyzed,together with the substitu-tion of W for Co.With the possibility of spray pyrolysis,the Ni-Co-W-containing oxide precursor presents a homogeneous distribution of metal elements,which is beneficial for the uniform substitution of W in the final materials.It was observed that with W substitution,the size of primary particles decreased from 338.06 to 71.76 nm,and cation disordering was as low as 3.34%.As a consequence,the pre-pared LNCW exhibited significantly improved electrochemical performance.Under optimal conditions,the lithium-ion battery assembled with LiNi_(0.9)Co_(0.0925)W_(0.0075)O_(2)(LNCW-0.75mol%)had an improved capacity retention of 82.7%after 200 cycles,which provides insight in-to the development of Ni-rich low-Co materials.This work presents that W can compensate for the loss caused by Co deficiency to a cer-tain extent. 展开更多
关键词 lithium-ion batteries Ni-rich LOW-COBALT W substitution spray pyrolysis
下载PDF
Chemical looping reforming of the micromolecular component from biomass pyrolysis via Fe_(2)O_(3)@SBA-16
8
作者 Yunchang Li Bo Zhang +3 位作者 Xiantan Yang Bolun Yang Shengyong Zhang Zhiqiang Wu 《International Journal of Coal Science & Technology》 EI CAS CSCD 2024年第3期120-134,共15页
To solve the problems of low gasification efficiency and high tar content caused by solid–solid contact between biomass and oxygen carrier in traditional biomass chemical looping gasification process.The decoupling s... To solve the problems of low gasification efficiency and high tar content caused by solid–solid contact between biomass and oxygen carrier in traditional biomass chemical looping gasification process.The decoupling strategy was adopted to decouple the biomass gasification process,and the composite oxygen carrier was prepared by embedding Fe_(2)O_(3) in molecular sieve SBA-16 for the chemical looping reforming process of pyrolysis micromolecular model compound methane,which was expected to realize the directional reforming of pyrolysis volatiles to prepare hydrogen-rich syngas.Thermodynamic analysis of the reaction system was carried out based on the Gibbs free energy minimization method,and the reforming performance was evaluated by a fixed bed reactor,and the kinetic parameters were solved based on the gas–solid reaction model.Thermodynamic analysis verified the feasibility of the reaction and provided theoretical guidance for experimental design.The experimental results showed that the reaction performance of Fe_(2)O_(3)@SBA-16 was compared with that of pure Fe_(2)O_(3) and Fe_(2)O_(3)@SBA-15,and the syngas yield was increased by 55.3%and 20.7%respectively,and it had good cycle stability.Kinetic analysis showed that the kinetic model changed from three-dimensional diffusion to first-order reaction with the increase of temperature.The activation energy was 192.79 kJ/mol by fitting.This paper provides basic data for the directional preparation of hydrogen-rich syngas from biomass and the design of oxygen carriers for pyrolysis of all-component chemical looping reforming. 展开更多
关键词 Biomass pyrolysis METHANE Chemical looping reforming Oxygen carrier Kinetic analysis
下载PDF
Pyrolysis of Copper Phthalocyanine as Non-noble Metal Electrocatalysts for Oxygen Reduction Reaction
9
作者 ZHANG Lijuan LU Jinhua +1 位作者 WANG Yan LI Xiang 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS CSCD 2024年第5期1087-1092,共6页
We investigated the relationship between oxygen reduction reaction(ORR)activity and the pyrolysis temperature(650-850℃)of CuPc in alkaline solution.The highly active sites were formed through the decomposition of CuP... We investigated the relationship between oxygen reduction reaction(ORR)activity and the pyrolysis temperature(650-850℃)of CuPc in alkaline solution.The highly active sites were formed through the decomposition of CuPc or Cu-N_(4) structure after releasing 4-nitrophthalonitrile.Cu-Nx incorporated with carbon were the main active sites.The XPS measurement results show that,at lower temperature,the contents of pyridinic-N and pyrrolic-N account for the most of the total N.As the temperature is higher than 750℃,the content of graphitic N(26.11%)increases and pyridinic-N(58.81%)becomes the dominant specie.When the temperature is higher than 850℃,the content of graphitic N increases remarkably and becomes the dominant species.Moreover,the specific surface areas decrease with increased pyrolysis temperature.Benefiting from the synergistic effect,the pyrolysis temperature at 750℃of CuPc displays superior electrocatalytic properties.The obtained results reveal that the fabricated non-noble metal catalysts can be used as low-cost,efficient catalyst for water splitting ORR in metal-air batteries and fuel cells. 展开更多
关键词 copper phthalocyanine pyrolysis ELECTROCATALYTIC oxygen reduction reaction
下载PDF
Computational fluid dynamics modeling of rapid pyrolysis of solid waste magnesium nitrate hydrate under different injection methods
10
作者 Wenchang Wu Kefan Yu +1 位作者 Liang Zhao Hui Dong 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2024年第2期224-237,共14页
This study developed a numerical model to efficiently treat solid waste magnesium nitrate hydrate through multi-step chemical reactions.The model simulates two-phase flow,heat,and mass transfer processes in a pyrolysi... This study developed a numerical model to efficiently treat solid waste magnesium nitrate hydrate through multi-step chemical reactions.The model simulates two-phase flow,heat,and mass transfer processes in a pyrolysis furnace to improve the decomposition rate of magnesium nitrate.The performance of multi-nozzle and single-nozzle injection methods was evaluated,and the effects of primary and secondary nozzle flow ratios,velocity ratios,and secondary nozzle inclination angles on the decomposition rate were investigated.Results indicate that multi-nozzle injection has a higher conversion efficiency and decomposition rate than single-nozzle injection,with a 10.3%higher conversion rate under the design parameters.The decomposition rate is primarily dependent on the average residence time of particles,which can be increased by decreasing flow rate and velocity ratios and increasing the inclination angle of secondary nozzles.The optimal parameters are injection flow ratio of 40%,injection velocity ratio of 0.6,and secondary nozzle inclination of 30°,corresponding to a maximum decomposition rate of 99.33%. 展开更多
关键词 MULTI-NOZZLE Computational fluid dynamics Thermal decomposition reaction pyrolysis furnace
下载PDF
Micro-aluminum powder with bi-or tri-component alloy coating as a promising catalyst:Boosting pyrolysis and combustion of ammonium perchlorate
11
作者 Chao Wang Ying Liu +6 位作者 Mingze Wu Jia Li Ying Feng Xianjin Ning Hong Li Ningfei Wang Baolu Shi 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2024年第3期100-113,共14页
A novel design of micro-aluminum(μAl)powder coated with bi-/tri-component alloy layer,such as:Ni-P and Ni-P-Cu(namely,Al@Ni-P,Al@Ni-P-Cu,respectively),as combustion catalysts,were introduced to release its huge energ... A novel design of micro-aluminum(μAl)powder coated with bi-/tri-component alloy layer,such as:Ni-P and Ni-P-Cu(namely,Al@Ni-P,Al@Ni-P-Cu,respectively),as combustion catalysts,were introduced to release its huge energy inside Al-core and promote rapid pyrolysis of ammonium perchlorate(AP)at a lower temperature in aluminized propellants.The microstructure of Al@Ni-P-Cu demonstrates that a three-layer Ni-P-Cu shell,with the thickness of~100 nm,is uniformly supported byμAl carrier(fuel unit),which has an amorphous surface with a thickness of~2.3 nm(catalytic unit).The peak temperature of AP with the addition of Al@Ni-P-Cu(3.5%)could significantly drop to 316.2℃ at high-temperature thermal decomposition,reduced by 124.3℃,in comparison to that of pure AP with 440.5℃.It illustrated that the introduction of Al@Ni-P-Cu could weaken or even eliminate the obstacle of AP pyrolysis due to its reduction of activation energy with 118.28 kJ/mol.The laser ignition results showed that the ignition delay time of Al@Ni-P-Cu/AP mixture with 78 ms in air is shorter than that of Al@Ni-P/AP(118 ms),decreased by 33.90%.Those astonishing breakthroughs were attributed to the synergistic effects of adequate active sites on amorphous surface and oxidation exothermic reactions(7597.7 J/g)of Al@Ni-P-Cu,resulting in accelerated mass and/or heat transfer rate to catalyze AP pyrolysis and combustion.Moreover,it is believed to provide an alternative Al-based combustion catalyst for propellant designer,to promote the development the propellants toward a higher energy. 展开更多
关键词 Micro-aluminum powder(μAl) Nano-sized alloy coating Combustion catalyst Ammonium perchlorate pyrolysis behavior Ignition and combustion
下载PDF
Study of Pyrolysis Characteristics and Kinetic Analysis of Shenmu Coal at a High Heating Rate Using TG-FTIR
12
作者 An Xiaoxi Zhang Yanpeng +2 位作者 Shang Yanchao Tian Yuanyu Qiao Yingyun 《China Petroleum Processing & Petrochemical Technology》 SCIE CAS CSCD 2024年第1期47-55,共9页
Coal pyrolysis is a fundamental reaction in the thermal processing and utilization of coal.Investigating the behavior and kinetics of coal pyrolysis is crucial for optimizing,designing,and developing a composite riser... Coal pyrolysis is a fundamental reaction in the thermal processing and utilization of coal.Investigating the behavior and kinetics of coal pyrolysis is crucial for optimizing,designing,and developing a composite riser for the staged pyrolysis gasification process of pulverized coal.In this study,the non-isothermal pyrolysis behavior and kinetics of coal were examined at different heating rates(30,50,100,300,500,700,and 900℃/min)using thermogravimetry(TG)coupled with Fourier-transform infrared spectroscopy.Analysis of the TG/derivative TG(TG/DTG)curves indicated that coal pyrolysis mainly occurred between 300℃ and 700℃.Higher heating rates led to more volatiles being released from the coal,and a higher temperature was required to achieve rapid pyrolysis.Kinetic analysis showed that both the model-free methods(Friedman,Flynn-Wall-Ozawa,and Kissinger-Akahira-Sunose)and the model-based method(Coats-Redfern)effectively describe the coal pyrolysis process.The change in the Ea values between the two kinetic models was consistent throughout the pyrolysis process,and the most probable mechanism was the F2 model(secondary chemical reaction).In addition,the heating rate did not change the overall reaction order of the pyrolysis process;however,a higher heating rate resulted in a decrease in the Ea value during the initial pyrolysis stage. 展开更多
关键词 coal pyrolysis TG-FTIR characteristic parameters DYNAMICS
下载PDF
Oil-source correlation and Paleozoic source rock analysis in the Siwa Basin,Western Desert:Insights from well-logs,Rock-Eval pyrolysis,and biomarker data
13
作者 Mohamed I.Abdel-Fattah Mohamed Reda +3 位作者 Mohamed Fathy Diaa A.Saadawi Fahad Alshehri Mohamed S.Ahmed 《Energy Geoscience》 EI 2024年第3期313-327,共15页
Understanding the origins of potential source rocks and unraveling the intricate connections between reservoir oils and their source formations in the Siwa Basin(Western Desert,Egypt)necessitate a thorough oil-source ... Understanding the origins of potential source rocks and unraveling the intricate connections between reservoir oils and their source formations in the Siwa Basin(Western Desert,Egypt)necessitate a thorough oil-source correlation investigation.This objective is achieved through a meticulous analysis of well-log responses,Rock-Eval pyrolysis,and biomarker data.The analysis of Total Organic Carbon across 31 samples representing Paleozoic formations in the Siwa A-1X well reveals a spectrum of organic richness ranging from 0.17 wt%to 2.04 wt%,thereby highlighting diverse levels of organic content and the presence of both Type II and Type III kerogen.Examination of the fingerprint characteristics of eight samples from the well suggests that the Dhiffah Formation comprises a blend of terrestrial and marine organic matter.Notably,a significant contribution from more oxidized residual organic matter and gas-prone Type III kerogen is observed.Contrarily,the Desouky and Zeitoun formations exhibit mixed organic matter indicative of a transitional environment,and thus featuring a pronounced marine influence within a more reducing setting,which is associated with Type II kerogen.Through analysis of five oil samples from different wells—SIWA L-1X,SIWA R-3X,SIWA D-1X,PTAH 5X,and PTAH 6X,it is evident that terrestrial organic matter,augmented by considerable marine input,was deposited in an oxidizing environment,and contains Type III kerogen.Geochemical scrutiny confirms the coexistence of mixed terrestrial organic matter within varying redox environments.Noteworthy is the uniformity of identified kerogen Types II and III across all samples,known to have potential for hydrocarbon generation.The discovery presented in this paper unveils captivating prospects concerning the genesis of oil in the Jurassic Safa reservoir,suggesting potential links to Paleozoic sources or even originating from the Safa Member itself.These revelations mark a substantial advancement in understanding source rock dynamics and their intricate relationship with reservoir oils within the Siwa Basin.By illuminating the processes of hydrocarbon genesis in the region,this study significantly enriches our knowledge base. 展开更多
关键词 Biomarker data Oil-source correlation Rock-Eval pyrolysis Source rocks Siwa Basin
下载PDF
Sustainable Biofuel Production from Brown and Green Macroalgae through the Pyrolysis
14
作者 Apip Amrullah Widya Fatriasari +2 位作者 Novia Amalia Sholeha Edy Hartulistiyoso Obie Farobie 《Journal of Renewable Materials》 EI CAS 2024年第6期1087-1102,共16页
The escalating demand for energy coupled with environmental concerns necessitates exploring sustainable alternatives to fossil fuels.The study explores the viability of using large ocean-based seaweeds as a source of ... The escalating demand for energy coupled with environmental concerns necessitates exploring sustainable alternatives to fossil fuels.The study explores the viability of using large ocean-based seaweeds as a source of thirdgeneration biomass,specifically focusing on their conversion to biofuel via the process of pyrolysis.Sargassum plagiophyllum and Ulva lactuca represent prevalent forms of macroalgae,posing significant discharge challenges for coastal regions globally.However,the exploration of their potential for bio-oil generation via pyrolysis remains limited.This study investigates the pyrolysis process of S.plagiophyllum and U.lactuca for biofuel production,aiming to provide valuable insights into their utilization and optimization.Pyrolysis experiments were conducted within temperature ranges of 400°C to 600°C and durations of 10 to 50 min using a batch reactor.The chemical analysis of the synthesized bio-oil indicated it contains critical compounds such as organic acid derivatives,furans,nitrogenous aromatics,and aliphatic hydrocarbons.The effectiveness of converting the initial biomass into bio-oil is significantly influenced by the pace at which the biomass undergoes decomposition,underscoring the importance of comprehending the kinetic aspects of this conversion.By applying the Arrhenius formula,we calculated the activation energies and frequency factors,with the findings for S.plagiophyllum being 15.27 kJ/mol and 0.477 s^(-1),and for U.lactuca,the values were 43.17 kJ/mol and 0.351 s^(-1),correspondingly.These findings underscore the potential of brown and green macroalgae as sustainable sources for biofuel production via pyrolysis,offering insights for further optimization and valorization efforts in the quest for renewable energy solutions. 展开更多
关键词 BIOMASS BIO-OIL MACROALGAE pyrolysis reaction kinetics
下载PDF
Geochemical Analysis of Albian-Maastrichtian Formations in the Offshore Basin of the Abidjan Margin: Rock-Eval Pyrolysis Study
15
作者 N’Guessan Donald Ahoure Blandine Akissi Egoran +3 位作者 Guy Richard N’Dri Kouadio Zokagon Sylvain Sehi Emmanuelle Laure Oura Zéli Bruno Digbehi 《Open Journal of Geology》 CAS 2024年第8期805-822,共18页
The Albian-Maastrichtian interval of the Ivorian sedimentary basin has been the subject of numerous sedimentological, biostratigraphic, and geophysical studies. However, its geochemical characteristics remain relative... The Albian-Maastrichtian interval of the Ivorian sedimentary basin has been the subject of numerous sedimentological, biostratigraphic, and geophysical studies. However, its geochemical characteristics remain relatively unexplored. This study aims to determine the oil potential and the nature of the organic matter it contains. It focuses on the geochemical analysis (physicochemical method) of two oil wells located in the offshore sedimentary basin of Côte d’Ivoire, specifically in the Abidjan margin. A total of 154 cuttings samples from wells TMH-1X and TMH-2X were analyzed to determine their oil potential and the nature of the organic matter (OM) they contain. The analyses were performed using Rock-Eval pyrolysis, a method that characterizes the amount of hydrocarbons generated by the organic matter present in the rocks. The key parameters measured include Total Organic Carbon (TOC), Hydrogen Index (HI), oil potential (S2), and maximum pyrolysis temperature (Tmax). These parameters are used to assess the amount of organic matter, its thermal maturity, and its potential to generate hydrocarbons in the studied wells. The results show significant variations between different stratigraphic levels. In well TMH-1X, the Cenomanian and Campanian intervals stand out with very good quantities of organic matter (OM) with good oil potential, although often immature. In contrast, other stages such as the Albian and Turonian contain organic matter in moderate to low quantities, often immature and of continental type, which limits their capacity to generate hydrocarbons. In well TMH-2X, a similar trend is observed. Despite an abundance of organic matter, the oil potential remains low in most of the studied stages. The organic matter is primarily of type III (continental origin) and thermally immature, indicating a low potential for hydrocarbon generation. The study reveals that, although some intervals exhibit high-quality organic matter, the majority of the samples show insufficient maturity for effective hydrocarbon production. Wells TMH-1X and TMH-2X offer limited oil potential, requiring more advanced maturation conditions to fully exploit the hydrocarbon resources. 展开更多
关键词 GEOCHEMISTRY Rock-Eval pyrolysis Upper Senonian Petroleum Potential Côte d’Ivoire
下载PDF
A Review of the Life Cycle Analysis for Plastic Waste Pyrolysis
16
作者 Dounmene Tadida Lhami Arielle Wafula Gerald Nalume Youwene Gilbert 《Open Journal of Polymer Chemistry》 2024年第3期113-145,共33页
Pyrolysis is a rapidly expanding chemical-based recyclable method that complements physical recycling. It avoids improper disposal of post-consumer polymers and mitigates the ecological problems linked to the producti... Pyrolysis is a rapidly expanding chemical-based recyclable method that complements physical recycling. It avoids improper disposal of post-consumer polymers and mitigates the ecological problems linked to the production of new plastic. Nevertheless, while there is a consensus that pyrolysis might be a crucial technology in the years to come, more discussions are needed to address the challenges related to scaling up, the long-term sustainability of the process, and additional variables essential to the advancement of the green economy. Herein, it emphasizes knowledge gaps and methodological issues in current Life Cycle Assessment (LCA), underlining the need for standardized techniques and updated data to support robust decision-making for adopting pyrolysis technologies in waste management strategies. For this purpose, this study reviews the LCAs of pyrolytic processes, encompassing the complete life cycle, from feedstock collection to end-product distribution, including elements such as energy consumption, greenhouse gas emissions, and waste creation. Hence, we evaluate diverse pyrolysis processes, including slow, rapid, and catalytic pyrolysis, emphasizing their distinct efficiency and environmental footprints. Furthermore, we evaluate the impact of feedstock composition, process parameters, and scale of operation on the overall sustainability of pyrolysis-based plastic waste treatment by integrating results from current literature and identifying essential research needs. Therefore, this paper argues that existing LCA studies need more coherence and accuracy. It follows a thorough evaluation of previous research and suggests new insights into methodologies and restrictions. 展开更多
关键词 PLASTICS Thermal Recycling Carbon Dioxide Emissions Life Cycle Evaluation pyrolysis
下载PDF
Coconut Fiber Pyrolysis: Bio-Oil Characterization for Potential Application as an Alternative Energy Source and Production of Bio-Degradable Plastics
17
作者 Patrick Ssemujju Lubowa Hiram Ndiritu +1 位作者 Peter Oketch James Mutua 《World Journal of Engineering and Technology》 2024年第2期310-319,共10页
The current energy crisis could be alleviated by enhancing energy generation using the abundant biomass waste resources. Agricultural and forest wastes are the leading organic waste streams that can be transformed int... The current energy crisis could be alleviated by enhancing energy generation using the abundant biomass waste resources. Agricultural and forest wastes are the leading organic waste streams that can be transformed into useful alternative energy resources. Pyrolysis is one of the technologies for converting biomass into more valuable products, such as bio-oil, bio-char, and syngas. This work investigated the production of bio-oil through batch pyrolysis technology. A fixed bed pyrolyzer was designed and fabricated for bio-oil production. The major components of the system include a fixed bed reactor, a condenser, and a bio-oil collector. The reactor was heated using a cylindrical biomass external heater. The pyrolysis process was carried out in a reactor at a pressure of 1atm and a varying operating temperature of 150˚C, 250˚C, 350˚C to 450˚C for 120 minutes. The mass of 1kg of coconut fiber was used with particle sizes between 2.36 mm - 4.75 mm. The results show that the higher the temperature, the more volume of bio-oil produced, with the highest yield being 39.2%, at 450˚C with a heating rate of 10˚C/min. The Fourier transformation Infrared (FTIR) Spectroscopy analysis was used to analyze the bio-oil components. The obtained bio-oil has a pH of 2.4, a density of 1019.385 kg/m<sup>3</sup>, and a calorific value of 17.5 MJ/kg. The analysis also showed the presence of high-oxygenated compounds;carboxylic acids, phenols, alcohols, and branched oxygenated hydrocarbons as the main compounds present in the bio-oil. The results inferred that the liquid product could be bestowed as an alternative resource for polycarbonate material production. 展开更多
关键词 Batch pyrolysis Technology Coconut Fiber BIO-OIL Fourier Transformation Infrared Analysis
下载PDF
Effect of demineralization on pyrolysis characteristics of LPS coal based on its chemical structure 被引量:1
18
作者 Lin Qian Jinkai Xue +3 位作者 Chao Tao Chao Ma Xiaopeng Jiang Feiqiang Guo 《International Journal of Coal Science & Technology》 EI CAS CSCD 2023年第2期181-195,共15页
The critical issue in developing mature Oxy-Coal Combustion Steam System technology could be the reactivity of deminer-alized coal which,is closely related to its chemical structure.The chemical structures of Liupansh... The critical issue in developing mature Oxy-Coal Combustion Steam System technology could be the reactivity of deminer-alized coal which,is closely related to its chemical structure.The chemical structures of Liupanshui raw coal(LPS-R)and Liupanshui demineralized coal(LPS-D)were analyzed by FTIR and solid-state 13C-NMR.The pyrolysis experiments were carried out by TG,and the pyrolysis kinetics was analyzed by three iso-conversional methods.FTIR and 13C-NMR results suggested that the carbon structure of LPS coal was not altered greatly,while demineralization promoted the maturity of coal and the condensation degree of the aromatic ring,making the chemical structure of coal more stable.The oxygen-containing functional groups with low bond energy were reduced,and the ratio of aromatic carbon with high bond energy was increased,decreasing the pyrolysis reactivity.DTG curve-fitting results revealed that the thermal weight loss of LPS coal mainly came from the cleavage of aliphatic covalent bonds.By pyrolysis kinetics analysis of LPS-R and LPS-D,the apparent activation energies were 76±4 to 463±5 kJ/mol and 84±2 to 758±12 kJ/mol,respectively,under different conversion rates.The reactivity of the demineralized coal was inhibited to some extent,as the apparent activation energy of pyrolysis for LPS-D increased by acid treatment. 展开更多
关键词 DEMINERALIZATION Chemical structure of coal Coal pyrolysis pyrolysis kinetics Iso-conversional
下载PDF
Pyrometallurgical recycling of spent lithium-ion batteries from conventional roasting to synergistic pyrolysis with organic wastes 被引量:2
19
作者 Chao Pan Yafei Shen 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2023年第10期547-561,I0014,共16页
The synergistic pyrolysis has been increasingly used for recycling spent lithium-ion batteries(LIBs)and organic wastes(hydrogen and carbon sources),which are in-situ transformed into various reducing agents such as H_... The synergistic pyrolysis has been increasingly used for recycling spent lithium-ion batteries(LIBs)and organic wastes(hydrogen and carbon sources),which are in-situ transformed into various reducing agents such as H_(2),CO,and char via carbothermal and/or gas thermal reduction.Compared with the conventional roasting methods,this“killing two birds with one stone”strategy can not only reduce the cost and energy consumption,but also realize the valorization of organic wastes.This paper concluded the research progress in synergistic pyrolysis recycling of spent LIBs and organic wastes.On the one hand,valued metals such as Li,Co,Ni,and Mn can be recovered through the pyrolysis of the cathode materials with inherent organic materials(e.g.,separator,electrolyte)or graphite anode.During the pyrolysis process,the organic materials are decomposed into char and gases(e.g.,CO,H_(2),and CH_(4))as reducing agents,while the cathode material is decomposed and then converted into Li_(2)CO_(3) and low-valent transition metals or their oxides via in-situ thermal reduction.The formed Li_(2)CO_(3) can be easily recovered by the water leaching process,while the formed transition metals or their oxides(e.g.,Co,CoO,Ni,MnO,etc.)can be recovered by the reductant-free acid leaching or magnetic separation process.On the other hand,organic wastes(e.g.,biomass,plastics,etc.)as abundant hydrogen and carbon sources can be converted into gas(e.g.,H_(2),CO,etc.)and char via pyrolysis.The cathode materials are decomposed and subsequently reduced by the pyrolysis gas and char.In addition,the pyrolysis oil and gas can be upgraded by catalytic reforming with the active metals derived from cathode material.Finally,great challenges are proposed to promote this promising technology in the industrial applications. 展开更多
关键词 Synergistic pyrolysis Spent LIBs Biomass RECYCLING Reduction roasting
下载PDF
Mechanism and reservoir simulation study of the autothermic pyrolysis in-situ conversion process for oil shale recovery 被引量:2
20
作者 Wei Guo Qiang Li +2 位作者 Sun-Hua Deng Yuan Wang Chao-Fan Zhu 《Petroleum Science》 SCIE EI CAS CSCD 2023年第2期1053-1067,共15页
The autothermic pyrolysis in-situ conversion process (ATS) consumes latent heat of residual organic matter after kerogen pyrolysis by oxidation reaction, and it has the advantages of low development cost and exploitat... The autothermic pyrolysis in-situ conversion process (ATS) consumes latent heat of residual organic matter after kerogen pyrolysis by oxidation reaction, and it has the advantages of low development cost and exploitation of deep oil shale resources. However, the heating mechanism and the characteristic of different reaction zones are still unclear. In this study, an ATS numerical simulation model was proposed for the development of oil shale, which considers the pyrolysis of kerogen, high-temperature oxidation, and low-temperature oxidation. Based on the above model, the mechanism of the ATS was analyzed and the effects of preheating temperature, O_(2) content, and injection rate on recovery factor and energy efficiency were studied. The results showed that the ATS in the formation can be divided into five characteristic zones by evolution of the oil and O_(2) distribution, and the solid organic matter, including residue zone, autothermic zone, pyrolysis zone, preheating zone, and original zone. Energy efficiency was much higher for the ATS than for the high-temperature nitrogen injection in-situ conversion process (HNICP). There is a threshold value of the preheating temperature, the oil content, and the injection rate during the ATS, which is 400 °C, 0.18, and 1100 m3/day, respectively, in this study. 展开更多
关键词 Oil shale Autothermic pyrolysis In-situ conversion process Energy efficiency
下载PDF
上一页 1 2 47 下一页 到第
使用帮助 返回顶部