Response surface methodology (RSM) was used to optimize the fermentation medium for enhancing pyruvic acid production by Torulopsis glabrata TP19. In the first step of optimization, with Plackett-Burman design, ammoni...Response surface methodology (RSM) was used to optimize the fermentation medium for enhancing pyruvic acid production by Torulopsis glabrata TP19. In the first step of optimization, with Plackett-Burman design, ammonium sulfate, glucose and nicotinic acid were found to be the important factors affecting pyruvic acid production significantly. In the second step, a 23 full factorial central composite design and RSM were applied to determine the optimal concentration of each significant variable. A second-order polynomial was determined by the multiple regression analysis of the experimental data. The optimum values for the critical components were obtained as follows: ammonium sulfate 0.7498 (10.75 g/L), glucose 0.9383 (109.38 g/L) and nicotinic acid 0.3633 (7.86 mg/L) with a predicted value of maximum pyruvic acid production of 42.2 g/L. Under the optimal conditions, the practical pyruvic acid production was 42.4 g/L. The determination coefficient (R2) was 0.9483, which ensures adequate credibility of the model. By scaling up fermentation from flask to jar fermentor, we obtained promising results.展开更多
Uptakes of pyruvic acid for two types of commercially available weakly basic polymer sorbents, D301G and D301R, have been measured over a wide pH range and at various salinities of MgSO4. The results show that the ove...Uptakes of pyruvic acid for two types of commercially available weakly basic polymer sorbents, D301G and D301R, have been measured over a wide pH range and at various salinities of MgSO4. The results show that the overloading adsorption of pyruvic acid occurs on both weakly basic polymer sorbents, and the overloading models can predict the experimental data of uptake very well. The overloading value for D301G is larger than that for D301R. The adsorption isotherm of pyruvic acid for both polymeric sorbents is greatly affected by the solution pH and MgSO4 concentration in the aqueous phase, and a high recovery efficiency of pyruvic acid from aqueous solution can be obtained at the solution pH around 2.展开更多
A new cis-dioxovanadium (V) complex [VO2(C9H8N3O3)](C5H5N) involving a carboxyl group coordination employing a tridentate Schiff Base derived from pyruvic acid and isonicotinyl hydrazide is reported. This comple...A new cis-dioxovanadium (V) complex [VO2(C9H8N3O3)](C5H5N) involving a carboxyl group coordination employing a tridentate Schiff Base derived from pyruvic acid and isonicotinyl hydrazide is reported. This complex crystallizes in triclinic, space group P1^- with a = 7.3522 (12), b = 7.8376(13), c = 14.898(2) ,A°, a = 84.010(2), β = 86.568(2), γ= 64.586(2)°, V = 771.1(2)A °^3 ,Z = 2, F(000) = 376, Mr = 368.22, D, = 1.586 g/cm^3, g = 0.677 mm ^-1, R = 0.0421 and wR = 0.1253. The vanadium atom of the dioxovanadium (V) is five-coordinated to furnish a distorted trigonal bipyramid geometry.展开更多
One‐step production of pyruvic acid through selective oxidation of glycerol was investigated using lead promoted platinum/activated carbon(Pb‐Pt/AC)catalysts under mild conditions.The results of N2physisorption,X‐r...One‐step production of pyruvic acid through selective oxidation of glycerol was investigated using lead promoted platinum/activated carbon(Pb‐Pt/AC)catalysts under mild conditions.The results of N2physisorption,X‐ray diffraction,X‐ray photoelectron spectroscopy,and high‐resolution transmission electron microscopy revealed that the alloy phases of PtPb and PtxPb were favorable for pyruvic acid production from glycerol oxidation,whereas the Pb3(CO3)2(OH)2and surface Pb0species inhibited the glycerol conversion.The loading of Pb and the catalyst preparation method(including impregnation and deposition precipitation)affected the formation of different metal species.Pyruvic acid was obtained at a yield of18.4%on a5.0wt%Pb‐5.0wt%Pt/AC catalyst prepared by co‐deposition precipitation method and500°C argon treatment.展开更多
Four Schiff bases, from pyruvic acid (1) with amines containing N and S donor atoms, thiocarbohydrazide (2, 61%), 2-methyl-3-thiosemicarbazide (3, 26%), S-benzyldithiocarbazate (4, 51%) and S-n-octyldithiocarbazate (5...Four Schiff bases, from pyruvic acid (1) with amines containing N and S donor atoms, thiocarbohydrazide (2, 61%), 2-methyl-3-thiosemicarbazide (3, 26%), S-benzyldithiocarbazate (4, 51%) and S-n-octyldithiocarbazate (5, 63%) have been successfully synthesized. The conventional method was used and a series of novel linear and cyclic Schiff bases were obtained with or without catalyst. All the Schiff bases were fully characterized by CHN elemental analysis, FT-IR, 1H & 13C NMR, EI-MS and two of the Schiff bases were further characterized by X-ray crystallographic structure analysis. Compound 2 crystallizes in the triclinic space group P-1 and unit cell dimensions are: a = 4.1777(8), b = 5.9538(11), c = 13.458(3) Å, α = 92.759(6), β = 90.813(6), γ = 100.040(6)°, R1 = 0.0439. Compound 3 crystallizes in the orthorhombic space group P n a 2(1) and unit cell dimensions are: a = 5.5992(2), b = 11.3962(5), c = 10.6473(5), α = 92.759(6), β = 90.813(6), γ = 100.040(6)°, R1 = 0.0285. Compounds 2 and 3 were obtained as cyclic Schiff bases which are triazine derivatives.展开更多
It is important to study the solvent effect on keto-enol tautomerism that has applications in many areas of chemical engineering.In this work,we use a multiscale reaction density functional theory(Rx DFT)to study the ...It is important to study the solvent effect on keto-enol tautomerism that has applications in many areas of chemical engineering.In this work,we use a multiscale reaction density functional theory(Rx DFT)to study the keto-enol tautomerism and isomerization of pyruvic acid.The results show that both effects of solvation and water assistance could reduce the reaction barriers.The water molecule participates the reaction as a catalyst to accept/give the protons with forming a hexagonal ring in the transition state.As a result of this temporary and intermediate hexagonal ring,the solute configuration undergoes a small variation during the reaction,giving a diminished contribution to the intrinsic reaction free energy.The solvent distribution shows a local ordering behavior near the solute that also reduces the contribution of solvation effect to the reaction barrier.Water assistance plays a major role in both pre-reaction and postreaction process.In terms of the driving force for the reaction,the effects of both solvation and water assistance are important.展开更多
New oscillating reaction with the participation of a macrocyclic nickel(Ⅱ) complex ion [Ni(TIM )]2+ as catalyst and pyruvic acid as organic substrate in acidic bromate medium are described' This complex ion cont...New oscillating reaction with the participation of a macrocyclic nickel(Ⅱ) complex ion [Ni(TIM )]2+ as catalyst and pyruvic acid as organic substrate in acidic bromate medium are described' This complex ion contains the ligand: 2, 3,9, 10-tetramethyl - 1, 4, 8, 11 - tetraazacyclotetradeca - 1, 3, 8, 10 - tetraene. The [Ni (TIM ) ]2+ion can undergo oxidation reaction of Ni (Ⅱ ) Ni (Ⅲ ). Detailed research on the system's oscillation characters and influential factors is made and the mechanism is briefly discussed.展开更多
In this paper a new chemical oscillating reaction in the pyruvic acid-BrO-H2SO4 - [CuL](ClO4)2 system, where L is 5, 7, 12, 14-tetraethyl-7, 14-dimethyl-1, 4, 8, 11 -tetraazacyclotetradeca-4, 11-diene, is reported. Th...In this paper a new chemical oscillating reaction in the pyruvic acid-BrO-H2SO4 - [CuL](ClO4)2 system, where L is 5, 7, 12, 14-tetraethyl-7, 14-dimethyl-1, 4, 8, 11 -tetraazacyclotetradeca-4, 11-diene, is reported. The features of the oscillations are studied in detail. The effects of Ag+,Hg2+,CCl4, Vc, H2O2, acrylonitrile, and temperature on the oscillation system are also discussed.展开更多
Density functional theory BLYP (using Becke's and Lee-Yang-Pars's correlation functionals), ab initio Hartree-Fock (HF) and hybrid DFT/HF B3LYP calculations were carried out to study the structure and vibratio...Density functional theory BLYP (using Becke's and Lee-Yang-Pars's correlation functionals), ab initio Hartree-Fock (HF) and hybrid DFT/HF B3LYP calculations were carried out to study the structure and vibrational spectra of pyruvic acid. The scaled B3LYP/6-31G* frequencies correspond well with available experimental assignment of the functional vibrational modes and the mean absolut devation is only 12.3cm^(-1).展开更多
The products of basic hydrolysis of ethyl oxal-acetate and the preparation of 3-ethoxy carbonyl pyruvic acid 1 are reported.Esterification reaction of 1 with unhindered alcohols could be carried out smoothly, but it w...The products of basic hydrolysis of ethyl oxal-acetate and the preparation of 3-ethoxy carbonyl pyruvic acid 1 are reported.Esterification reaction of 1 with unhindered alcohols could be carried out smoothly, but it was unsuccessful with hindered alcohols.展开更多
Metformin is a common diabetes drug that may reduce lactate clearance by inhibiting mitochondrial oxidative phosphorylation,leading to metforminassociated lactic acidosis(MALA).As diabetes mellitus is a common chronic...Metformin is a common diabetes drug that may reduce lactate clearance by inhibiting mitochondrial oxidative phosphorylation,leading to metforminassociated lactic acidosis(MALA).As diabetes mellitus is a common chronic metabolic condition found in critically ill patients,pre-existing metformin use can often be found in critically ill patients admitted to the intensive care unit or the high dependency unit.The aim of this narrative mini review is therefore to update clinicians about MALA,and to provide a practical approach to its diagnosis and treatment.MALA in critically ill patients may be suspected in a patient who has received metformin and who has a high anion gap metabolic acidosis,and confirmed when lactate exceeds 5 mmol/L.Risk factors include those that reduce renal elimination of metformin(renal impairment from any cause,histamine-2 receptor antagonists,ribociclib)and excessive alcohol consumption(as ethanol oxidation consumes nicotinamide adenine dinucleotides that are also required for lactate metabolism).Treatment of MALA involves immediate cessation of metformin,supportive management,treating other concurrent causes of lactic acidosis like sepsis,and treating any coexisting diabetic ketoacidosis.Severe MALA requires extracorporeal removal of metformin with either intermittent hemodialysis or continuous kidney replacement therapy.The optimal time to restart metformin has not been well-studied.It is nonetheless reasonable to first ensure that lactic acidosis has resolved,and then recheck the kidney function post-recovery from critical illness,ensuring that the estimated glomerular filtration rate is 30 mL/min/1.73 m^(2) or better before restarting metformin.展开更多
Background Streptococcus (S.) oligofermentans is a newly identified bacteria with a yet to be defined mechanism of sucrose metabolism that results in acid production. This study aimed to investigate the biochemical ...Background Streptococcus (S.) oligofermentans is a newly identified bacteria with a yet to be defined mechanism of sucrose metabolism that results in acid production. This study aimed to investigate the biochemical mechanisms of S. oligoferm-entans glucose metaolism. Methods The S. oligofermentans LMG21532, Lactobacillus (L.) fermentum 38 and the S. mutans UA140 were used to characterize sucrose metabolism by measuring lactate dehydrogenase (LDH) activity and lactic acid production. Continuous dynamics and high performance capillary electrophoresis were used to determine LDH activity and lactic acid production, respectively, from bacteria collected at 0, 10 and 30 minutes after cultured in 10% sucrose. Results These analyses demonstrated that LDH activity of the three bacterial strains examined remained stable but significantly different throughout the sucrose fermentation process. The S. oligofermentans LDH activity ((0.61±0.05) U/mg) was significantly lower than that of L. fermentum ((52.91±8.97) U/mg). In addition, the S. oligofermentans total lactate production ((0.048±0.021) mmol/L) was also significantly lower than that of L. fermentum ((0.958±0.201) mmol/L). Although the S. oligofermentans LDH production was almost double of that produced by S. mutans ((0.32±0.07) U/mg), lactic acid production was approximately one sixth that of S. mutans ((0.296±0.058) mmol/L). Additional tests examining pyruvic acid production (the LDH substrate) demonstrated that lactic acid concentrations correlated with pyruvic acid production. That is, pyruvic acid production by S. oligofermentans was undetectable following sucrose incubation, however, (0.074±0.024) and (0.175±0.098) mmol/L pyruvic acid were produced by S. mutans and L. fermentum, respectively. Conclusion S. oligofermentans is incapable of fermenting carbohydrates to produce enough pyruvic acid, which results in reduced lactic acid production.展开更多
The pyruvic acid salicylhydrazone and its new complex of Pr(III) were synthesized. The formulae C 10 H 10 N 2O 4 (mark as H 3L) and [Pr 2(L) 2(H 2O) 2]·3H 2O (L=the triad form of the pyruvic acid...The pyruvic acid salicylhydrazone and its new complex of Pr(III) were synthesized. The formulae C 10 H 10 N 2O 4 (mark as H 3L) and [Pr 2(L) 2(H 2O) 2]·3H 2O (L=the triad form of the pyruvic acid salicylhydrazone [C 10 H 7N 2O 4] 3- ) were determined by elemental and EDTA volumetric analysis. Molar conductance, IR, UV, X ray and 1H NMR were carried out for the characterizations of the complex and the ligand. The thermal decompositions of the ligand and the complex with the kinetic study were carried out by non isothermal thermogravimetry. The Kissinger's method and Ozawa's method are used to calculate the activation energy value of the main step decomposition. The stages of the decompositions were identified by TG DTG DSC curve. The non isothermal kinetic data were analyzed by means of integral and differential methods. The possible reaction mechanism and the kinetic equation were investigated by comparing the kinetic parameters.展开更多
Nonalcoholic steatohepatitis(NASH)may soon become the leading cause of end-stage liver disease worldwide with limited treatment options.Liver fibrosis,which is driven by chronic inflammation and hepatic stellate cell(...Nonalcoholic steatohepatitis(NASH)may soon become the leading cause of end-stage liver disease worldwide with limited treatment options.Liver fibrosis,which is driven by chronic inflammation and hepatic stellate cell(HSC)activation,critically determines morbidity and mortality in patients with NASH.Pyruvate kinase M2(PKM2)is involved in immune activation and inflammatory liver diseases;however,its role and therapeutic potential in NASH-related fibrosis remain largely unexplored.Bioinformatics screening and analysis of human and murine NASH livers indicated that PKM2 was upregulated in nonparenchymal cells(NPCs),especially macrophages,in the livers of patients with fibrotic NASH.Macrophage-specific PKM2 knockout(PKM2^(FL/FL)LysM-Cre)significantly ameliorated hepatic inflammation and fibrosis severity in three distinct NASH models induced by a methionine-and choline-deficient(MCD)diet,a high-fat high-cholesterol(HFHC)diet,and a western diet plus weekly carbon tetrachloride injection(WD/CCl_(4)).Single-cell transcriptomic analysis indicated that deletion of PKM2 in macrophages reduced profibrotic Ly6C^(high) macrophage infiltration.Mechanistically,PKM2-dependent glycolysis promoted NLR family pyrin domain containing 3(NLRP3)activation in proinflammatory macrophages,which induced HSC activation and fibrogenesis.A pharmacological PKM2 agonist efficiently attenuated the profibrotic crosstalk between macrophages and HSCs in vitro and in vivo.Translationally,ablation of PKM2 in NPCs by cholesterol-conjugated heteroduplex oligonucleotides,a novel oligonucleotide drug that preferentially accumulates in the liver,dose-dependently reversed NASH-related fibrosis without causing observable hepatotoxicity.The present study highlights the pivotal role of macrophage PKM2 in advancing NASH fibrogenesis.Thus,therapeutic modulation of PKM2 in a macrophage-specific or liver-specific manner may serve as a novel strategy to combat NASH-related fibrosis.展开更多
High-mobility group box 1 was first discovered in the calf thymus as a DNA-binding nuclear protein and has been widely studied in diverse fields,including neurology and neuroscience.High-mobility group box 1 in the ex...High-mobility group box 1 was first discovered in the calf thymus as a DNA-binding nuclear protein and has been widely studied in diverse fields,including neurology and neuroscience.High-mobility group box 1 in the extracellular space functions as a pro-inflammatory damage-associated molecular pattern,which has been proven to play an important role in a wide variety of central nervous system disorders such as ischemic stroke,Alzheimer’s disease,frontotemporal dementia,Parkinson’s disease,multiple sclerosis,epilepsy,and traumatic brain injury.Several drugs that inhibit high-mobility group box 1 as a damage-associated molecular pattern,such as glycyrrhizin,ethyl pyruvate,and neutralizing anti-high-mobility group box 1 antibodies,are commonly used to target high-mobility group box 1 activity in central nervous system disorders.Although it is commonly known for its detrimental inflammatory effect,high-mobility group box 1 has also been shown to have beneficial pro-regenerative roles in central nervous system disorders.In this narrative review,we provide a brief summary of the history of high-mobility group box 1 research and its characterization as a damage-associated molecular pattern,its downstream receptors,and intracellular signaling pathways,how high-mobility group box 1 exerts the repair-favoring roles in general and in the central nervous system,and clues on how to differentiate the pro-regenerative from the pro-inflammatory role.Research targeting high-mobility group box 1 in the central nervous system may benefit from differentiating between the two functions rather than overall suppression of high-mobility group box 1.展开更多
BACKGROUND The pyruvate dehydrogenase E1 subunitβ(PDHB)gene which regulates energy metabolism is located in mitochondria.However,few studies have elucidated the role and mechanism of PDHB in different cancers.AIM To ...BACKGROUND The pyruvate dehydrogenase E1 subunitβ(PDHB)gene which regulates energy metabolism is located in mitochondria.However,few studies have elucidated the role and mechanism of PDHB in different cancers.AIM To comprehensive pan-cancer analysis of PDHB was performed based on bioinformatics approaches to explore its tumor diagnostic and prognostic value and tumor immune relevance in cancer.In vitro experiments were performed to examine the biological regulation of PDHB in liver cancer.METHODS Pan-cancer data related to PDHB were obtained from the Cancer Genome Atlas(TCGA)database.Analysis of the gene expression profiles of PDHB was based on TCGA and Genotype Tissue Expression Dataset databases.Cox regression analysis and Kaplan-Meier methods were used to assess the correlation between PDHB expression and survival prognosis in cancer patients.The correlation between PDHB and receiver operating characteristic diagnostic curve,clinicopathological staging,somatic mutation,tumor mutation burden(TMB),microsatellite instability(MSI),DNA methylation,and drug susceptibility in pan-cancer was also analyzed.Various algorithms were used to analyze the correlation between PDHB and immune cell infiltration and tumor chemotaxis environment,as well as the co-expression analysis of PDHB and immune checkpoint(ICP)genes.The expression and functional phenotype of PDHB in single tumor cells were studied by single-cell sequencing,and the functional enrichment analysis of PDHB-related genes was performed.The study also validated the level of mRNA or protein expression of PDHB in several cancers.Finally,in vitro experiments verified the regulatory effect of PDHB on the proliferation,migration,and invasion of liver cancer.RESULTS PDHB was significantly and differently expressed in most cancers.PDHB was significantly associated with prognosis in patients with a wide range of cancers,including kidney renal clear cell carcinoma,kidney renal papillary cell carcinoma,breast invasive carcinoma,and brain lower grade glioma.In some cancers,PDHB expression was clearly associated with gene mutations,clinicopathological stages,and expression of TMB,MSI,and ICP genes.The expression of PDHB was closely related to the infiltration of multiple immune cells in the immune microenvironment and the regulation of tumor chemotaxis environment.In addition,single-cell sequencing results showed that PDHB correlated with different biological phenotypes of multiple cancer single cells.This study further demonstrated that down-regulation of PDHB expression inhibited the proliferation,migration,and invasion functions of hepatoma cells.CONCLUSION As a member of pan-cancer,PDHB may be a novel cancer marker with potential value in diagnosing cancer,predicting prognosis,and in targeted therapy.展开更多
Background: Sepsis involves life-threatening organ dysfunction and is caused by a dysregulated host response to infection. No specific therapies against sepsis have been reported. Celastrol(Cel) is a natural anti-infl...Background: Sepsis involves life-threatening organ dysfunction and is caused by a dysregulated host response to infection. No specific therapies against sepsis have been reported. Celastrol(Cel) is a natural anti-inflammatory compound that shows potential against systemic inflammatory diseases. This study aimed to investigate the pharmacological activity and molecular mechanism of Cel in models of endotoxemia and sepsis.Methods: We evaluated the anti-inflammatory efficacy of Cel against endotoxemia and sepsis in mice and macrophage cultures treated with lipopolysaccharide(LPS). We screened for potential protein targets of Cel using activity-based protein profiling(ABPP). Potential targets were validated using biophysical methods such as cellular thermal shift assays(CETSA) and surface plasmon resonance(SPR). Residues involved in Cel binding to target proteins were identified through point mutagenesis, and the functional effects of such binding were explored through gene knockdown.Results: Cel protected mice from lethal endotoxemia and improved their survival with sepsis, and it significantly decreased the levels of pro-inflammatory cytokines in mice and macrophages treated with LPS(P <0.05). Cel bound to Cys424 of pyruvate kinase M2(PKM2), inhibiting the enzyme and thereby suppressing aerobic glycolysis(Warburg effect). Cel also bound to Cys106 in high mobility group box 1(HMGB1) protein, reducing the secretion of inflammatory cytokine interleukin(IL)-1β. Cel bound to the Cys residues in lactate dehydrogenase A(LDHA).Conclusions: Cel inhibits inflammation and the Warburg effect in sepsis via targeting PKM2 and HMGB1 protein.展开更多
Primary biliary cholangitis(PBC)is a chronic cholestatic progressive liver disease and one of the most important progressive cholangiopathies in adults.Damage to cholangiocytes triggers the development of intrahepatic...Primary biliary cholangitis(PBC)is a chronic cholestatic progressive liver disease and one of the most important progressive cholangiopathies in adults.Damage to cholangiocytes triggers the development of intrahepatic cholestasis,which progresses to cirrhosis in the terminal stage of the disease.Accumulating data indicate that damage to biliary epithelial cells[(BECs),cholangiocytes]is most likely associated with the intracellular accumulation of bile acids,which have potent detergent properties and damaging effects on cell membranes.The mechanisms underlying uncontrolled bile acid intake into BECs in PBC are associated with pH change in the bile duct lumen,which is controlled by the bicarbonate(HCO3-)buffer system“biliary HCO3-umbrella”.The impaired production and entry of HCO3-from BECs into the bile duct lumen is due to epigenetic changes in expression of the X-linked microRNA 506.Based on the growing body of knowledge on the molecular mechanisms of cholangiocyte damage in patients with PBC,we propose a hypothesis explaining the pathogenesis of the first morphologic(ductulopenia),immunologic(antimitochondrial autoantibodies)and clinical(weakness,malaise,rapid fatigue)signs of the disease in the asymptomatic stage.This review focuses on the consideration of these mechanisms.展开更多
Background:The expression of pyruvate kinase muscle 2(PKM2)is augmented in macrophages of patients with atherosclerotic coronary artery disease.The role of PKM2 in atherosclerosis is to be determined.Methods:Global an...Background:The expression of pyruvate kinase muscle 2(PKM2)is augmented in macrophages of patients with atherosclerotic coronary artery disease.The role of PKM2 in atherosclerosis is to be determined.Methods:Global and myeloid cell-specific PKM2 knock-in mice with ApoE^(-/-)background(ApoE^(-/-),PKM2^(KI/KI)and Lyz2-cre,ApoE^(-/-),and PKM2^(flox/flox))were produced to evaluate the clinical significance of PKM2 in atherosclerosis development.Wild-type and PKM2 knock-in macrophages were isolated to assess the function of PKM2 in macrophage phagocytosis.Atherosclerotic mice were treated with PKM2 inhibitor shikonin(SKN)to evaluate the therapeutic potential of PKM2 suppression in atherosclerosis.Results:Oxidized low-density lipoprotein(oxLDL)upregulated PKM2 in macrophages.PKM2 in return promoted the uptake of oxLDL by macrophages.Overexpressed PKM2 accelerated atherosclerosis in mice.SKN blocked the progress of mouse atherosclerosis.Conclusions:PKM2 accelerates macrophage phagocytosis and atherosclerosis.Targeting PKM2 is a potential therapy for atherosclerosis.展开更多
In the present, investigation effects of sub-lethal dose of purified paper wasp Ropalidia marginata venom toxins were evaluated on important metabolic enzymes i.e. ALP ACP, GPT, GOT, LDH, and AchE enzyme activity in s...In the present, investigation effects of sub-lethal dose of purified paper wasp Ropalidia marginata venom toxins were evaluated on important metabolic enzymes i.e. ALP ACP, GPT, GOT, LDH, and AchE enzyme activity in serum, liver, and gastrocnemius muscles of albino mice. Alkaline phosphatase was found to be increased up to 119.9% at the 6<sup>th</sup> hr of the toxin injection in comparison to control. This elevation may be due to cytolysis. Maximum increase i.e., 153.33% level of glutamate pyruvate transaminase (GPT) was found at 6 hrs of 40% of 24-h LD<sub>50</sub> treatment while it was found to be 151.1% at 6 hrs of 24 hr 80% of LD<sub>50</sub>, venom injection. A significant elevation was observed in LDH activity in serum, liver, and muscles, while the activity of AchE was decreased in serum, liver, and gastrocnemius muscles of albino mice after injecting the sub-lethal dose of Ropalidia marginata venom. This increase in the activity of LDH produces liver damage, massive disintegration and necrosis of hepatic cells. This elevation in LDH level led to a significant increase in the glucose catabolism and elevated oxidative stress in muscle and liver cells. It also displays insufficient oxygen supply and consequently leads to cell death. In experimental animals, venom toxin treatment decreased AchE level, and animals showed muscular paralysis. When mice were treated with 40% and 80% of 24-h LD<sub>50</sub> of purified venom caused a significant (p < 0.05) elevation in the level of ACP, GOT, GPT, and LDH while the reduction in ALP and AChE level. Present study will be useful in the development of prototypes for study of pharmacological and therapeutic effects of various venom toxins. For this purpose structure activity relationship of enzyme and venom toxin, its due interaction to various metabolic enzymes and receptors must be explored.展开更多
文摘Response surface methodology (RSM) was used to optimize the fermentation medium for enhancing pyruvic acid production by Torulopsis glabrata TP19. In the first step of optimization, with Plackett-Burman design, ammonium sulfate, glucose and nicotinic acid were found to be the important factors affecting pyruvic acid production significantly. In the second step, a 23 full factorial central composite design and RSM were applied to determine the optimal concentration of each significant variable. A second-order polynomial was determined by the multiple regression analysis of the experimental data. The optimum values for the critical components were obtained as follows: ammonium sulfate 0.7498 (10.75 g/L), glucose 0.9383 (109.38 g/L) and nicotinic acid 0.3633 (7.86 mg/L) with a predicted value of maximum pyruvic acid production of 42.2 g/L. Under the optimal conditions, the practical pyruvic acid production was 42.4 g/L. The determination coefficient (R2) was 0.9483, which ensures adequate credibility of the model. By scaling up fermentation from flask to jar fermentor, we obtained promising results.
基金Supported by the National Natural Science Foundation of China (No.29836130).
文摘Uptakes of pyruvic acid for two types of commercially available weakly basic polymer sorbents, D301G and D301R, have been measured over a wide pH range and at various salinities of MgSO4. The results show that the overloading adsorption of pyruvic acid occurs on both weakly basic polymer sorbents, and the overloading models can predict the experimental data of uptake very well. The overloading value for D301G is larger than that for D301R. The adsorption isotherm of pyruvic acid for both polymeric sorbents is greatly affected by the solution pH and MgSO4 concentration in the aqueous phase, and a high recovery efficiency of pyruvic acid from aqueous solution can be obtained at the solution pH around 2.
基金Project was supported by Scientific Research common program of Beijing municipal commission of education (KM20051028005)
文摘A new cis-dioxovanadium (V) complex [VO2(C9H8N3O3)](C5H5N) involving a carboxyl group coordination employing a tridentate Schiff Base derived from pyruvic acid and isonicotinyl hydrazide is reported. This complex crystallizes in triclinic, space group P1^- with a = 7.3522 (12), b = 7.8376(13), c = 14.898(2) ,A°, a = 84.010(2), β = 86.568(2), γ= 64.586(2)°, V = 771.1(2)A °^3 ,Z = 2, F(000) = 376, Mr = 368.22, D, = 1.586 g/cm^3, g = 0.677 mm ^-1, R = 0.0421 and wR = 0.1253. The vanadium atom of the dioxovanadium (V) is five-coordinated to furnish a distorted trigonal bipyramid geometry.
基金supported by the National Natural Science Foundation of China(21176236)~~
文摘One‐step production of pyruvic acid through selective oxidation of glycerol was investigated using lead promoted platinum/activated carbon(Pb‐Pt/AC)catalysts under mild conditions.The results of N2physisorption,X‐ray diffraction,X‐ray photoelectron spectroscopy,and high‐resolution transmission electron microscopy revealed that the alloy phases of PtPb and PtxPb were favorable for pyruvic acid production from glycerol oxidation,whereas the Pb3(CO3)2(OH)2and surface Pb0species inhibited the glycerol conversion.The loading of Pb and the catalyst preparation method(including impregnation and deposition precipitation)affected the formation of different metal species.Pyruvic acid was obtained at a yield of18.4%on a5.0wt%Pb‐5.0wt%Pt/AC catalyst prepared by co‐deposition precipitation method and500°C argon treatment.
文摘Four Schiff bases, from pyruvic acid (1) with amines containing N and S donor atoms, thiocarbohydrazide (2, 61%), 2-methyl-3-thiosemicarbazide (3, 26%), S-benzyldithiocarbazate (4, 51%) and S-n-octyldithiocarbazate (5, 63%) have been successfully synthesized. The conventional method was used and a series of novel linear and cyclic Schiff bases were obtained with or without catalyst. All the Schiff bases were fully characterized by CHN elemental analysis, FT-IR, 1H & 13C NMR, EI-MS and two of the Schiff bases were further characterized by X-ray crystallographic structure analysis. Compound 2 crystallizes in the triclinic space group P-1 and unit cell dimensions are: a = 4.1777(8), b = 5.9538(11), c = 13.458(3) &ARING;, α = 92.759(6), β = 90.813(6), γ = 100.040(6)°, R1 = 0.0439. Compound 3 crystallizes in the orthorhombic space group P n a 2(1) and unit cell dimensions are: a = 5.5992(2), b = 11.3962(5), c = 10.6473(5), α = 92.759(6), β = 90.813(6), γ = 100.040(6)°, R1 = 0.0285. Compounds 2 and 3 were obtained as cyclic Schiff bases which are triazine derivatives.
基金National Natural Science Foundation of China(Nos.21978079,and 21878078).
文摘It is important to study the solvent effect on keto-enol tautomerism that has applications in many areas of chemical engineering.In this work,we use a multiscale reaction density functional theory(Rx DFT)to study the keto-enol tautomerism and isomerization of pyruvic acid.The results show that both effects of solvation and water assistance could reduce the reaction barriers.The water molecule participates the reaction as a catalyst to accept/give the protons with forming a hexagonal ring in the transition state.As a result of this temporary and intermediate hexagonal ring,the solute configuration undergoes a small variation during the reaction,giving a diminished contribution to the intrinsic reaction free energy.The solvent distribution shows a local ordering behavior near the solute that also reduces the contribution of solvation effect to the reaction barrier.Water assistance plays a major role in both pre-reaction and postreaction process.In terms of the driving force for the reaction,the effects of both solvation and water assistance are important.
文摘New oscillating reaction with the participation of a macrocyclic nickel(Ⅱ) complex ion [Ni(TIM )]2+ as catalyst and pyruvic acid as organic substrate in acidic bromate medium are described' This complex ion contains the ligand: 2, 3,9, 10-tetramethyl - 1, 4, 8, 11 - tetraazacyclotetradeca - 1, 3, 8, 10 - tetraene. The [Ni (TIM ) ]2+ion can undergo oxidation reaction of Ni (Ⅱ ) Ni (Ⅲ ). Detailed research on the system's oscillation characters and influential factors is made and the mechanism is briefly discussed.
文摘In this paper a new chemical oscillating reaction in the pyruvic acid-BrO-H2SO4 - [CuL](ClO4)2 system, where L is 5, 7, 12, 14-tetraethyl-7, 14-dimethyl-1, 4, 8, 11 -tetraazacyclotetradeca-4, 11-diene, is reported. The features of the oscillations are studied in detail. The effects of Ag+,Hg2+,CCl4, Vc, H2O2, acrylonitrile, and temperature on the oscillation system are also discussed.
基金This work was supported by the Natural Science Foundation of Shandong Province. the National Key Laboratory Foundation of Cry
文摘Density functional theory BLYP (using Becke's and Lee-Yang-Pars's correlation functionals), ab initio Hartree-Fock (HF) and hybrid DFT/HF B3LYP calculations were carried out to study the structure and vibrational spectra of pyruvic acid. The scaled B3LYP/6-31G* frequencies correspond well with available experimental assignment of the functional vibrational modes and the mean absolut devation is only 12.3cm^(-1).
文摘The products of basic hydrolysis of ethyl oxal-acetate and the preparation of 3-ethoxy carbonyl pyruvic acid 1 are reported.Esterification reaction of 1 with unhindered alcohols could be carried out smoothly, but it was unsuccessful with hindered alcohols.
文摘Metformin is a common diabetes drug that may reduce lactate clearance by inhibiting mitochondrial oxidative phosphorylation,leading to metforminassociated lactic acidosis(MALA).As diabetes mellitus is a common chronic metabolic condition found in critically ill patients,pre-existing metformin use can often be found in critically ill patients admitted to the intensive care unit or the high dependency unit.The aim of this narrative mini review is therefore to update clinicians about MALA,and to provide a practical approach to its diagnosis and treatment.MALA in critically ill patients may be suspected in a patient who has received metformin and who has a high anion gap metabolic acidosis,and confirmed when lactate exceeds 5 mmol/L.Risk factors include those that reduce renal elimination of metformin(renal impairment from any cause,histamine-2 receptor antagonists,ribociclib)and excessive alcohol consumption(as ethanol oxidation consumes nicotinamide adenine dinucleotides that are also required for lactate metabolism).Treatment of MALA involves immediate cessation of metformin,supportive management,treating other concurrent causes of lactic acidosis like sepsis,and treating any coexisting diabetic ketoacidosis.Severe MALA requires extracorporeal removal of metformin with either intermittent hemodialysis or continuous kidney replacement therapy.The optimal time to restart metformin has not been well-studied.It is nonetheless reasonable to first ensure that lactic acidosis has resolved,and then recheck the kidney function post-recovery from critical illness,ensuring that the estimated glomerular filtration rate is 30 mL/min/1.73 m^(2) or better before restarting metformin.
基金This study was supported by grants from 115-National Key Technologies R&D Programme, the Ministry of Science and Technology of China (No. 2007BAI18B01), National Natural Science Foundation of China (No. 8107088), and Beijing Municipal Natural Science Foundation (No. 7102163). Conflict of interests: None.
文摘Background Streptococcus (S.) oligofermentans is a newly identified bacteria with a yet to be defined mechanism of sucrose metabolism that results in acid production. This study aimed to investigate the biochemical mechanisms of S. oligoferm-entans glucose metaolism. Methods The S. oligofermentans LMG21532, Lactobacillus (L.) fermentum 38 and the S. mutans UA140 were used to characterize sucrose metabolism by measuring lactate dehydrogenase (LDH) activity and lactic acid production. Continuous dynamics and high performance capillary electrophoresis were used to determine LDH activity and lactic acid production, respectively, from bacteria collected at 0, 10 and 30 minutes after cultured in 10% sucrose. Results These analyses demonstrated that LDH activity of the three bacterial strains examined remained stable but significantly different throughout the sucrose fermentation process. The S. oligofermentans LDH activity ((0.61±0.05) U/mg) was significantly lower than that of L. fermentum ((52.91±8.97) U/mg). In addition, the S. oligofermentans total lactate production ((0.048±0.021) mmol/L) was also significantly lower than that of L. fermentum ((0.958±0.201) mmol/L). Although the S. oligofermentans LDH production was almost double of that produced by S. mutans ((0.32±0.07) U/mg), lactic acid production was approximately one sixth that of S. mutans ((0.296±0.058) mmol/L). Additional tests examining pyruvic acid production (the LDH substrate) demonstrated that lactic acid concentrations correlated with pyruvic acid production. That is, pyruvic acid production by S. oligofermentans was undetectable following sucrose incubation, however, (0.074±0.024) and (0.175±0.098) mmol/L pyruvic acid were produced by S. mutans and L. fermentum, respectively. Conclusion S. oligofermentans is incapable of fermenting carbohydrates to produce enough pyruvic acid, which results in reduced lactic acid production.
基金ProjectsupportedbytheNaturalScienceFoundationofShaanxiProvince (No .98H0 10 )andStateKeyLaboratoryofRareEarthMaterialsChemistryandApplication&PekingUniversity .
文摘The pyruvic acid salicylhydrazone and its new complex of Pr(III) were synthesized. The formulae C 10 H 10 N 2O 4 (mark as H 3L) and [Pr 2(L) 2(H 2O) 2]·3H 2O (L=the triad form of the pyruvic acid salicylhydrazone [C 10 H 7N 2O 4] 3- ) were determined by elemental and EDTA volumetric analysis. Molar conductance, IR, UV, X ray and 1H NMR were carried out for the characterizations of the complex and the ligand. The thermal decompositions of the ligand and the complex with the kinetic study were carried out by non isothermal thermogravimetry. The Kissinger's method and Ozawa's method are used to calculate the activation energy value of the main step decomposition. The stages of the decompositions were identified by TG DTG DSC curve. The non isothermal kinetic data were analyzed by means of integral and differential methods. The possible reaction mechanism and the kinetic equation were investigated by comparing the kinetic parameters.
基金supported by the Key-Area Research and Development Program of Guangdong Province(2020B1111110004)the Local Innovative and Research Teams Project of Guangdong Pearl River Talents Program(2017BT01Y036)+2 种基金the Guangdong Major Project of Basic and Applied Basic Research(2023B0303000004)the National Natural Science Foundation of China(81871987,82293680,82293681,and 82273154)the Guangdong Basic and Applied Research Foundation(2023A1515012905 and 2022A1515012581)。
文摘Nonalcoholic steatohepatitis(NASH)may soon become the leading cause of end-stage liver disease worldwide with limited treatment options.Liver fibrosis,which is driven by chronic inflammation and hepatic stellate cell(HSC)activation,critically determines morbidity and mortality in patients with NASH.Pyruvate kinase M2(PKM2)is involved in immune activation and inflammatory liver diseases;however,its role and therapeutic potential in NASH-related fibrosis remain largely unexplored.Bioinformatics screening and analysis of human and murine NASH livers indicated that PKM2 was upregulated in nonparenchymal cells(NPCs),especially macrophages,in the livers of patients with fibrotic NASH.Macrophage-specific PKM2 knockout(PKM2^(FL/FL)LysM-Cre)significantly ameliorated hepatic inflammation and fibrosis severity in three distinct NASH models induced by a methionine-and choline-deficient(MCD)diet,a high-fat high-cholesterol(HFHC)diet,and a western diet plus weekly carbon tetrachloride injection(WD/CCl_(4)).Single-cell transcriptomic analysis indicated that deletion of PKM2 in macrophages reduced profibrotic Ly6C^(high) macrophage infiltration.Mechanistically,PKM2-dependent glycolysis promoted NLR family pyrin domain containing 3(NLRP3)activation in proinflammatory macrophages,which induced HSC activation and fibrogenesis.A pharmacological PKM2 agonist efficiently attenuated the profibrotic crosstalk between macrophages and HSCs in vitro and in vivo.Translationally,ablation of PKM2 in NPCs by cholesterol-conjugated heteroduplex oligonucleotides,a novel oligonucleotide drug that preferentially accumulates in the liver,dose-dependently reversed NASH-related fibrosis without causing observable hepatotoxicity.The present study highlights the pivotal role of macrophage PKM2 in advancing NASH fibrogenesis.Thus,therapeutic modulation of PKM2 in a macrophage-specific or liver-specific manner may serve as a novel strategy to combat NASH-related fibrosis.
基金supported by a grant of the M.D.-Ph.D./Medical Scientist Training Program through the Korea Health Industry Development Institute(KHIDI)funded by the Ministry of Health&Welfare,Republic of Korea(to HK)+3 种基金supported by National Research Foundation of Korea(NRF)grants funded by the Korean government(MSITMinistry of Science and ICT)(NRF2019R1A5A2026045 and NRF-2021R1F1A1061819)a grant from the Korean Health Technology R&D Project through the Korea Health Industry Development Institute(KHIDI),funded by the Ministry of Health&Welfare,Republic of Korea(HR21C1003)New Faculty Research Fund of Ajou University School of Medicine(to JYC)。
文摘High-mobility group box 1 was first discovered in the calf thymus as a DNA-binding nuclear protein and has been widely studied in diverse fields,including neurology and neuroscience.High-mobility group box 1 in the extracellular space functions as a pro-inflammatory damage-associated molecular pattern,which has been proven to play an important role in a wide variety of central nervous system disorders such as ischemic stroke,Alzheimer’s disease,frontotemporal dementia,Parkinson’s disease,multiple sclerosis,epilepsy,and traumatic brain injury.Several drugs that inhibit high-mobility group box 1 as a damage-associated molecular pattern,such as glycyrrhizin,ethyl pyruvate,and neutralizing anti-high-mobility group box 1 antibodies,are commonly used to target high-mobility group box 1 activity in central nervous system disorders.Although it is commonly known for its detrimental inflammatory effect,high-mobility group box 1 has also been shown to have beneficial pro-regenerative roles in central nervous system disorders.In this narrative review,we provide a brief summary of the history of high-mobility group box 1 research and its characterization as a damage-associated molecular pattern,its downstream receptors,and intracellular signaling pathways,how high-mobility group box 1 exerts the repair-favoring roles in general and in the central nervous system,and clues on how to differentiate the pro-regenerative from the pro-inflammatory role.Research targeting high-mobility group box 1 in the central nervous system may benefit from differentiating between the two functions rather than overall suppression of high-mobility group box 1.
基金Supported by The 2021 Central-Guided Local Science and Technology Development FundLanzhou COVID-19 Prevention and Control Technology Research Project,No.2020-XG-1Gansu Province Outstanding Graduate Student"Innovation Star"Project,No.2022CXZX-748,No.2022CXZX-746.
文摘BACKGROUND The pyruvate dehydrogenase E1 subunitβ(PDHB)gene which regulates energy metabolism is located in mitochondria.However,few studies have elucidated the role and mechanism of PDHB in different cancers.AIM To comprehensive pan-cancer analysis of PDHB was performed based on bioinformatics approaches to explore its tumor diagnostic and prognostic value and tumor immune relevance in cancer.In vitro experiments were performed to examine the biological regulation of PDHB in liver cancer.METHODS Pan-cancer data related to PDHB were obtained from the Cancer Genome Atlas(TCGA)database.Analysis of the gene expression profiles of PDHB was based on TCGA and Genotype Tissue Expression Dataset databases.Cox regression analysis and Kaplan-Meier methods were used to assess the correlation between PDHB expression and survival prognosis in cancer patients.The correlation between PDHB and receiver operating characteristic diagnostic curve,clinicopathological staging,somatic mutation,tumor mutation burden(TMB),microsatellite instability(MSI),DNA methylation,and drug susceptibility in pan-cancer was also analyzed.Various algorithms were used to analyze the correlation between PDHB and immune cell infiltration and tumor chemotaxis environment,as well as the co-expression analysis of PDHB and immune checkpoint(ICP)genes.The expression and functional phenotype of PDHB in single tumor cells were studied by single-cell sequencing,and the functional enrichment analysis of PDHB-related genes was performed.The study also validated the level of mRNA or protein expression of PDHB in several cancers.Finally,in vitro experiments verified the regulatory effect of PDHB on the proliferation,migration,and invasion of liver cancer.RESULTS PDHB was significantly and differently expressed in most cancers.PDHB was significantly associated with prognosis in patients with a wide range of cancers,including kidney renal clear cell carcinoma,kidney renal papillary cell carcinoma,breast invasive carcinoma,and brain lower grade glioma.In some cancers,PDHB expression was clearly associated with gene mutations,clinicopathological stages,and expression of TMB,MSI,and ICP genes.The expression of PDHB was closely related to the infiltration of multiple immune cells in the immune microenvironment and the regulation of tumor chemotaxis environment.In addition,single-cell sequencing results showed that PDHB correlated with different biological phenotypes of multiple cancer single cells.This study further demonstrated that down-regulation of PDHB expression inhibited the proliferation,migration,and invasion functions of hepatoma cells.CONCLUSION As a member of pan-cancer,PDHB may be a novel cancer marker with potential value in diagnosing cancer,predicting prognosis,and in targeted therapy.
基金suppor ted by the National Key Research and Development Program of China(2020YFA0908000)the Innovation Team and Talents Cultivation Program of the National Administration of Traditional Chinese Medicine(ZYYCXTD-C-202002)+1 种基金the National Natural Science Foundation of China(82074098,81841001)the Fundamental Research Funds for the Central Public Welfare Research Institutes(ZXKT18003)。
文摘Background: Sepsis involves life-threatening organ dysfunction and is caused by a dysregulated host response to infection. No specific therapies against sepsis have been reported. Celastrol(Cel) is a natural anti-inflammatory compound that shows potential against systemic inflammatory diseases. This study aimed to investigate the pharmacological activity and molecular mechanism of Cel in models of endotoxemia and sepsis.Methods: We evaluated the anti-inflammatory efficacy of Cel against endotoxemia and sepsis in mice and macrophage cultures treated with lipopolysaccharide(LPS). We screened for potential protein targets of Cel using activity-based protein profiling(ABPP). Potential targets were validated using biophysical methods such as cellular thermal shift assays(CETSA) and surface plasmon resonance(SPR). Residues involved in Cel binding to target proteins were identified through point mutagenesis, and the functional effects of such binding were explored through gene knockdown.Results: Cel protected mice from lethal endotoxemia and improved their survival with sepsis, and it significantly decreased the levels of pro-inflammatory cytokines in mice and macrophages treated with LPS(P <0.05). Cel bound to Cys424 of pyruvate kinase M2(PKM2), inhibiting the enzyme and thereby suppressing aerobic glycolysis(Warburg effect). Cel also bound to Cys106 in high mobility group box 1(HMGB1) protein, reducing the secretion of inflammatory cytokine interleukin(IL)-1β. Cel bound to the Cys residues in lactate dehydrogenase A(LDHA).Conclusions: Cel inhibits inflammation and the Warburg effect in sepsis via targeting PKM2 and HMGB1 protein.
文摘Primary biliary cholangitis(PBC)is a chronic cholestatic progressive liver disease and one of the most important progressive cholangiopathies in adults.Damage to cholangiocytes triggers the development of intrahepatic cholestasis,which progresses to cirrhosis in the terminal stage of the disease.Accumulating data indicate that damage to biliary epithelial cells[(BECs),cholangiocytes]is most likely associated with the intracellular accumulation of bile acids,which have potent detergent properties and damaging effects on cell membranes.The mechanisms underlying uncontrolled bile acid intake into BECs in PBC are associated with pH change in the bile duct lumen,which is controlled by the bicarbonate(HCO3-)buffer system“biliary HCO3-umbrella”.The impaired production and entry of HCO3-from BECs into the bile duct lumen is due to epigenetic changes in expression of the X-linked microRNA 506.Based on the growing body of knowledge on the molecular mechanisms of cholangiocyte damage in patients with PBC,we propose a hypothesis explaining the pathogenesis of the first morphologic(ductulopenia),immunologic(antimitochondrial autoantibodies)and clinical(weakness,malaise,rapid fatigue)signs of the disease in the asymptomatic stage.This review focuses on the consideration of these mechanisms.
基金National Key R&D program of China,Grant/Award Number:2021YFC2500700The National Natural Science Foundation of China+1 种基金Grant/Award Number:81730078The Chinese Academy of Medical Sciences Initiative for Innovative Medicine,Grant/Award Number:2021-I2M-1-049。
文摘Background:The expression of pyruvate kinase muscle 2(PKM2)is augmented in macrophages of patients with atherosclerotic coronary artery disease.The role of PKM2 in atherosclerosis is to be determined.Methods:Global and myeloid cell-specific PKM2 knock-in mice with ApoE^(-/-)background(ApoE^(-/-),PKM2^(KI/KI)and Lyz2-cre,ApoE^(-/-),and PKM2^(flox/flox))were produced to evaluate the clinical significance of PKM2 in atherosclerosis development.Wild-type and PKM2 knock-in macrophages were isolated to assess the function of PKM2 in macrophage phagocytosis.Atherosclerotic mice were treated with PKM2 inhibitor shikonin(SKN)to evaluate the therapeutic potential of PKM2 suppression in atherosclerosis.Results:Oxidized low-density lipoprotein(oxLDL)upregulated PKM2 in macrophages.PKM2 in return promoted the uptake of oxLDL by macrophages.Overexpressed PKM2 accelerated atherosclerosis in mice.SKN blocked the progress of mouse atherosclerosis.Conclusions:PKM2 accelerates macrophage phagocytosis and atherosclerosis.Targeting PKM2 is a potential therapy for atherosclerosis.
文摘In the present, investigation effects of sub-lethal dose of purified paper wasp Ropalidia marginata venom toxins were evaluated on important metabolic enzymes i.e. ALP ACP, GPT, GOT, LDH, and AchE enzyme activity in serum, liver, and gastrocnemius muscles of albino mice. Alkaline phosphatase was found to be increased up to 119.9% at the 6<sup>th</sup> hr of the toxin injection in comparison to control. This elevation may be due to cytolysis. Maximum increase i.e., 153.33% level of glutamate pyruvate transaminase (GPT) was found at 6 hrs of 40% of 24-h LD<sub>50</sub> treatment while it was found to be 151.1% at 6 hrs of 24 hr 80% of LD<sub>50</sub>, venom injection. A significant elevation was observed in LDH activity in serum, liver, and muscles, while the activity of AchE was decreased in serum, liver, and gastrocnemius muscles of albino mice after injecting the sub-lethal dose of Ropalidia marginata venom. This increase in the activity of LDH produces liver damage, massive disintegration and necrosis of hepatic cells. This elevation in LDH level led to a significant increase in the glucose catabolism and elevated oxidative stress in muscle and liver cells. It also displays insufficient oxygen supply and consequently leads to cell death. In experimental animals, venom toxin treatment decreased AchE level, and animals showed muscular paralysis. When mice were treated with 40% and 80% of 24-h LD<sub>50</sub> of purified venom caused a significant (p < 0.05) elevation in the level of ACP, GOT, GPT, and LDH while the reduction in ALP and AChE level. Present study will be useful in the development of prototypes for study of pharmacological and therapeutic effects of various venom toxins. For this purpose structure activity relationship of enzyme and venom toxin, its due interaction to various metabolic enzymes and receptors must be explored.