This socialized environment among educated and developed people causes themto focusmore on their appearance and health,which turns them towards medical-related treatments,leading us to discuss anti-aging treatment met...This socialized environment among educated and developed people causes themto focusmore on their appearance and health,which turns them towards medical-related treatments,leading us to discuss anti-aging treatment methods for each age group,particularly for urban people who are interested in this.Some anti-aging therapies are used to address the alterations brought on by aging in human life without the need for surgery or negative effects.Five anti-aging therapies such as microdermabrasion or dermabrasion,laser resurfacing anti-aging skin treatments,chemical peels,dermal fillers for aged skin,and botox injections are considered in this study.Based on the criteria of safety risk,investment cost,customer happiness,and side effects,the optimal alternative is picked.As a result,a NormalWiggly Hesitant Pythagorean Fuzzy Set(NWHPFS)is constructed and used in Multi-Criteria Decision-Making(MCDM)using traditional wavy mathematical approaches.The entropy approach is utilized to determine weight values,and the Normal Wiggly Hesitant Pythagorean-VlseKriterijumska Optimizacija I Kompromisno Resenje(NWHPF-VIKOR)method is utilized to rank alternatives using MCDM methodologies.Sensitivity analysis and comparative analysis were performed to ensure the robustness and reliability of the proposed method.The smart final choice will undoubtedly assist Decision Makers(DM)in making the right judgments,and the MCDM approach will undoubtedly assist individuals in understanding the medicine.展开更多
Green supplier selection is an important debate in green supply chain management(GSCM),attracting global attention from scholars,especially companies and policymakers.Companies frequently search for new ideas and stra...Green supplier selection is an important debate in green supply chain management(GSCM),attracting global attention from scholars,especially companies and policymakers.Companies frequently search for new ideas and strategies to assist them in realizing sustainable development.Because of the speculative character of human opinions,supplier selection frequently includes unreliable data,and the interval-valued Pythagorean fuzzy soft set(IVPFSS)provides an exceptional capacity to cope with excessive fuzziness,inconsistency,and inexactness through the decision-making procedure.The main goal of this study is to come up with new operational laws for interval-valued Pythagorean fuzzy soft numbers(IVPFSNs)and create two interaction operators-the intervalvalued Pythagorean fuzzy soft interaction weighted average(IVPFSIWA)and the interval-valued Pythagorean fuzzy soft interaction weighted geometric(IVPFSIWG)operators,and analyze their properties.These operators are highly advantageous in addressing uncertain problems by considering membership and non-membership values within intervals,providing a superior solution to other methods.Moreover,specialist judgments were calculated by the MCGDM technique,supporting the use of interaction AOs to regulate the interdependence and fundamental partiality of green supplier assessment aspects.Lastly,a statistical clarification of the planned method for green supplier selection is presented.展开更多
With the exponential increase in information security risks,ensuring the safety of aircraft heavily relies on the accurate performance of risk assessment.However,experts possess a limited understanding of fundamental ...With the exponential increase in information security risks,ensuring the safety of aircraft heavily relies on the accurate performance of risk assessment.However,experts possess a limited understanding of fundamental security elements,such as assets,threats,and vulnerabilities,due to the confidentiality of airborne networks,resulting in cognitive uncertainty.Therefore,the Pythagorean fuzzy Analytic Hierarchy Process(AHP)Technique for Order Preference by Similarity to an Ideal Solution(TOPSIS)is proposed to address the expert cognitive uncertainty during information security risk assessment for airborne networks.First,Pythagorean fuzzy AHP is employed to construct an index system and quantify the pairwise comparison matrix for determining the index weights,which is used to solve the expert cognitive uncertainty in the process of evaluating the index system weight of airborne networks.Second,Pythagorean fuzzy the TOPSIS to an Ideal Solution is utilized to assess the risk prioritization of airborne networks using the Pythagorean fuzzy weighted distance measure,which is used to address the cognitive uncertainty in the evaluation process of various indicators in airborne network threat scenarios.Finally,a comparative analysis was conducted.The proposed method demonstrated the highest Kendall coordination coefficient of 0.952.This finding indicates superior consistency and confirms the efficacy of the method in addressing expert cognition during information security risk assessment for airborne networks.展开更多
The Pythagorean triples (a, b | c) of planar geometry which satisfy the equation a<sup>2</sup>+b<sup>2</sup>=c<sup>2</sup> with integers (a, b, c) are generalized to 3D-Pythagorean ...The Pythagorean triples (a, b | c) of planar geometry which satisfy the equation a<sup>2</sup>+b<sup>2</sup>=c<sup>2</sup> with integers (a, b, c) are generalized to 3D-Pythagorean quadruples (a, b, c | d) of spatial geometry which satisfy the equation a<sup>2</sup>+b<sup>2</sup>+c<sup>2</sup>=d<sup>2</sup> with integers (a, b, c, d). Rules for a parametrization of the numbers (a, b, c, d) are derived and a list of all possible nonequivalent cases without common divisors up to d<sup>2</sup> is established. The 3D-Pythagorean quadruples are then generalized to 4D-Pythagorean quintuples (a, b, c, d | e) which satisfy the equation a<sup>2</sup>+b<sup>2</sup>+c<sup>2</sup>+d<sup>2</sup>=e<sup>2</sup> and a parametrization is derived. Relations to the 4-square identity are discussed which leads also to the N-dimensional case. The initial 3D- and 4D-Pythagorean numbers are explicitly calculated up to d<sup>2</sup>, respectively, e<sup>2</sup>.展开更多
Graph theory has a significant impact and is crucial in the structure of many real-life situations.To simulate uncertainty and ambiguity,many extensions of graph theoretical notions were created.Planar graphs play a v...Graph theory has a significant impact and is crucial in the structure of many real-life situations.To simulate uncertainty and ambiguity,many extensions of graph theoretical notions were created.Planar graphs play a vital role in modelling which has the property of non-crossing edges.Although crossing edges benefit,they have some drawbacks,which paved the way for the introduction of planar graphs.The overall purpose of the study is to contribute to the conceptual development of the Pythagorean Neutrosophic graph.The basic methodology of our research is the incorporation of the analogous concepts of planar graphs in the Pythagorean Neutrosophic graphs.The significant finding of our research is the introduction of Pythagorean Neutrosophic Planar graphs,a conceptual blending of Pythagorean Neutro-sophic and Planar graphs.The idea of Pythagorean Neutrosophic multigraphs and dual graphs are also introduced to deal with the ambiguous situations.This paper investigates the Pythagorean Neutrosophic planar values,which form the edges of the Pythagorean neutrosophic graphs.The concept of Pythagorean Neutrosophic dual graphs,isomorphism,co-weak and weak isomorphism have also been explored for Pythagorean Neutrosophic planar graphs.A decision-making algorithm was proposed with a numerical illustra-tion by using the Pythagorean Neutrosophic fuzzy graph.展开更多
As a generalization of fuzzy set,hesitant probabilistic fuzzy set and pythagorean triangular fuzzy set have their own unique advantages in describing decision information.As modern socioeconomic decision-making proble...As a generalization of fuzzy set,hesitant probabilistic fuzzy set and pythagorean triangular fuzzy set have their own unique advantages in describing decision information.As modern socioeconomic decision-making problems are becoming more and more complex,it also becomes more and more difficult to appropriately depict decision makers’cognitive information in decision-making process.In order to describe the decision information more comprehensively,we define a pythagorean probabilistic hesitant triangular fuzzy set(PPHTFS)by combining the pythagorean triangular fuzzy set and the probabilistic hesitant fuzzy set.Firstly,the basic operation and scoring function of the pythagorean probabilistic hesitant triangular fuzzy element(PPHTFE)are proposed,and the comparison rule of two PPHTFEs is given.Then,some pythagorean probabilistic hesitant triangular fuzzy aggregation operators are developed,and their properties are also studied.Finally,a multi-attribute decision-making(MADM)model is constructed based on the proposed operators under the pythagorean probabilistic hesitant triangular fuzzy information,and an illustration example is given to demonstrate the practicability and validity of the proposed decision-making method.展开更多
Hypersoft set theory is a most advanced form of soft set theory and an innovative mathematical tool for dealing with unclear complications.Pythagorean fuzzy hypersoft set(PFHSS)is the most influential and capable leew...Hypersoft set theory is a most advanced form of soft set theory and an innovative mathematical tool for dealing with unclear complications.Pythagorean fuzzy hypersoft set(PFHSS)is the most influential and capable leeway of the hypersoft set(HSS)and Pythagorean fuzzy soft set(PFSS).It is also a general form of the intuitionistic fuzzy hypersoft set(IFHSS),which provides a better and more perfect assessment of the decision-making(DM)process.The fundamental objective of this work is to enrich the precision of decision-making.A novel mixed aggregation operator called Pythagorean fuzzy hypersoft Einstein weighted geometric(PFHSEWG)based on Einstein’s operational laws has been developed.Some necessary properties,such as idempotency,boundedness,and homogeneity,have been presented for the anticipated PFHSEWG operator.Multi-criteria decision-making(MCDM)plays an active role in dealing with the complications of manufacturing design for material selection.However,conventional methods of MCDM usually produce inconsistent results.Based on the proposed PFHSEWG operator,a robust MCDM procedure for material selection in manufacturing design is planned to address these inconveniences.The expected MCDM method for material selection(MS)of cryogenic storing vessels has been established in the real world.Significantly,the planned model for handling inaccurate data based on PFHSS is more operative and consistent.展开更多
The aim of this paper is to introduce the concept of a generalized Pythagorean fuzzy soft set(GPFSS),which is a combination of the generalized fuzzy soft sets and Pythagorean fuzzy sets.Several of important operations...The aim of this paper is to introduce the concept of a generalized Pythagorean fuzzy soft set(GPFSS),which is a combination of the generalized fuzzy soft sets and Pythagorean fuzzy sets.Several of important operations of GPFSS including complement,restricted union,and extended intersection are discussed.The basic properties of GPFSS are presented.Further,an algorithm of GPFSSs is given to solve the fuzzy soft decision-making.Finally,a comparative analysis between the GPFSS approach and some existing approaches is provided to show their reliability over them.展开更多
According to the World Health Organization(WHO),cancer is the leading cause of death for children in low and middle-income countries.Around 400,000 kids get diagnosed with this illness each year,and their survival rat...According to the World Health Organization(WHO),cancer is the leading cause of death for children in low and middle-income countries.Around 400,000 kids get diagnosed with this illness each year,and their survival rate depends on the country in which they live.In this article,we present a Pythagorean fuzzy model that may help doctors identify the most likely type of cancer in children at an early stage by taking into account the symptoms of different types of cancer.The Pythagorean fuzzy decision-making techniques that we utilize are Pythagorean Fuzzy TOPSIS,Pythagorean Fuzzy Entropy(PF-Entropy),and Pythagorean Fuzzy PowerWeighted Geometric(PFPWG).Ourmodel is fed with nineteen symptoms and it diagnoses the risk of eight types of cancers in children.We develop an algorithm for each method and calculate its complexity.Additionally,we consider an example to make a clear understanding of our model.We also compare the final results of various tests that prove the authenticity of this study.展开更多
Experts use Pythagorean fuzzy hypersoft sets(PFHSS)in their investigations to resolve the indeterminate and imprecise information in the decision-making process.Aggregation operators(AOs)perform a leading role in perc...Experts use Pythagorean fuzzy hypersoft sets(PFHSS)in their investigations to resolve the indeterminate and imprecise information in the decision-making process.Aggregation operators(AOs)perform a leading role in perceptivity among two circulations of prospect and pull out concerns from that perception.In this paper,we extend the concept of PFHSS to interval-valued PFHSS(IVPFHSS),which is the generalized form of intervalvalued intuitionistic fuzzy soft set.The IVPFHSS competently deals with uncertain and ambagious information compared to the existing interval-valued Pythagorean fuzzy soft set.It is the most potent method for amplifying fuzzy data in the decision-making(DM)practice.Some operational laws for IVPFHSS have been proposed.Based on offered operational laws,two inventive AOs have been established:interval-valued Pythagorean fuzzy hypersoft weighted average(IVPFHSWA)and interval-valued Pythagorean fuzzy hypersoft weighted geometric(IVPFHSWG)operators with their essential properties.Multi-criteria group decision-making(MCGDM)shows an active part in contracts with the difficulties in industrial enterprise for material selection.But,the prevalent MCGDM approaches consistently carry irreconcilable consequences.Based on the anticipated AOs,a robust MCGDMtechnique is deliberate formaterial selection in industrial enterprises to accommodate this shortcoming.A real-world application of the projectedMCGDMmethod for material selection(MS)of cryogenic storing vessels is presented.The impacts show that the intended model is more effective and reliable in handling imprecise data based on IVPFHSS.展开更多
The utilization of qudits in quantum systems has led to significant advantages in quantum computation and information processing.Therefore,qudits have gained increased attention in recent research for their precise an...The utilization of qudits in quantum systems has led to significant advantages in quantum computation and information processing.Therefore,qudits have gained increased attention in recent research for their precise and efficient operations.In this work,we demonstrate the complete population transfer between the next-adjacent energy levels of a transmon qudit using the Pythagorean coupling method and energy level mapping.We achieve a|0>to|2>transfer with a process fidelity of 97.76%in the subspace spanned by|0>to|2>.Moreover,the transfer operation is achieved within a remarkably fast timescale,as short as 20 ns.This study may present a promising avenue for enhancing the operation flexibility and efficiency of qudits in future implementations.展开更多
The substitution box,often known as an S-box,is a nonlinear component that is a part of several block ciphers.Its purpose is to protect cryptographic algorithms from a variety of cryptanalytic assaults.A Multi-Criteri...The substitution box,often known as an S-box,is a nonlinear component that is a part of several block ciphers.Its purpose is to protect cryptographic algorithms from a variety of cryptanalytic assaults.A Multi-Criteria Decision Making(MCDM)problem has a complex selection procedure because of having many options and criteria to choose from.Because of this,statistical methods are necessary to assess the performance score of each S-box and decide which option is the best one available based on this score.Using the Pythagorean Fuzzy-based Technique for Order of Preference by Similarity to Ideal Solution(TOPSIS)method,the major objective of this investigation is to select the optimal S-box to be implemented from a pool of twelve key choices.With the help of the Pythagorean fuzzy set(PFS),the purpose of this article is to evaluate whether this nonlinear component is suitable for use in a variety of encryption applications.In this article,we have considered various characteristics of S-boxes,including nonlinearity,algebraic degree,strict avalanche criterion(SAC),absolute indicator,bit independent criterion(BIC),sum of square indicator,algebraic immunity,transparency order,robustness to differential cryptanalysis,composite algebraic immunity,signal to noise ratio-differential power attack(SNR-DPA),and confusion coefficient variance on some standard S-boxes that are Advanced Encryption Following this,the findings of the investigation are changed into Pythagorean fuzzy numbers in the shape of a matrix.This matrix is then subjected to an analysis using the TOPSIS method,which is dependent on the Pythagorean fuzzy set,to rank the most suitable S-box for use in encryption applications.展开更多
基金funded by the Korean Government(MSIT)Grant NRF-2022R1C1C1006671.
文摘This socialized environment among educated and developed people causes themto focusmore on their appearance and health,which turns them towards medical-related treatments,leading us to discuss anti-aging treatment methods for each age group,particularly for urban people who are interested in this.Some anti-aging therapies are used to address the alterations brought on by aging in human life without the need for surgery or negative effects.Five anti-aging therapies such as microdermabrasion or dermabrasion,laser resurfacing anti-aging skin treatments,chemical peels,dermal fillers for aged skin,and botox injections are considered in this study.Based on the criteria of safety risk,investment cost,customer happiness,and side effects,the optimal alternative is picked.As a result,a NormalWiggly Hesitant Pythagorean Fuzzy Set(NWHPFS)is constructed and used in Multi-Criteria Decision-Making(MCDM)using traditional wavy mathematical approaches.The entropy approach is utilized to determine weight values,and the Normal Wiggly Hesitant Pythagorean-VlseKriterijumska Optimizacija I Kompromisno Resenje(NWHPF-VIKOR)method is utilized to rank alternatives using MCDM methodologies.Sensitivity analysis and comparative analysis were performed to ensure the robustness and reliability of the proposed method.The smart final choice will undoubtedly assist Decision Makers(DM)in making the right judgments,and the MCDM approach will undoubtedly assist individuals in understanding the medicine.
基金funded by King Saud University,Riyadh,Saudi Arabia.
文摘Green supplier selection is an important debate in green supply chain management(GSCM),attracting global attention from scholars,especially companies and policymakers.Companies frequently search for new ideas and strategies to assist them in realizing sustainable development.Because of the speculative character of human opinions,supplier selection frequently includes unreliable data,and the interval-valued Pythagorean fuzzy soft set(IVPFSS)provides an exceptional capacity to cope with excessive fuzziness,inconsistency,and inexactness through the decision-making procedure.The main goal of this study is to come up with new operational laws for interval-valued Pythagorean fuzzy soft numbers(IVPFSNs)and create two interaction operators-the intervalvalued Pythagorean fuzzy soft interaction weighted average(IVPFSIWA)and the interval-valued Pythagorean fuzzy soft interaction weighted geometric(IVPFSIWG)operators,and analyze their properties.These operators are highly advantageous in addressing uncertain problems by considering membership and non-membership values within intervals,providing a superior solution to other methods.Moreover,specialist judgments were calculated by the MCGDM technique,supporting the use of interaction AOs to regulate the interdependence and fundamental partiality of green supplier assessment aspects.Lastly,a statistical clarification of the planned method for green supplier selection is presented.
基金supported by the Fundamental Research Funds for the Central Universities of CAUC(3122022076)National Natural Science Foundation of China(NSFC)(U2133203).
文摘With the exponential increase in information security risks,ensuring the safety of aircraft heavily relies on the accurate performance of risk assessment.However,experts possess a limited understanding of fundamental security elements,such as assets,threats,and vulnerabilities,due to the confidentiality of airborne networks,resulting in cognitive uncertainty.Therefore,the Pythagorean fuzzy Analytic Hierarchy Process(AHP)Technique for Order Preference by Similarity to an Ideal Solution(TOPSIS)is proposed to address the expert cognitive uncertainty during information security risk assessment for airborne networks.First,Pythagorean fuzzy AHP is employed to construct an index system and quantify the pairwise comparison matrix for determining the index weights,which is used to solve the expert cognitive uncertainty in the process of evaluating the index system weight of airborne networks.Second,Pythagorean fuzzy the TOPSIS to an Ideal Solution is utilized to assess the risk prioritization of airborne networks using the Pythagorean fuzzy weighted distance measure,which is used to address the cognitive uncertainty in the evaluation process of various indicators in airborne network threat scenarios.Finally,a comparative analysis was conducted.The proposed method demonstrated the highest Kendall coordination coefficient of 0.952.This finding indicates superior consistency and confirms the efficacy of the method in addressing expert cognition during information security risk assessment for airborne networks.
文摘The Pythagorean triples (a, b | c) of planar geometry which satisfy the equation a<sup>2</sup>+b<sup>2</sup>=c<sup>2</sup> with integers (a, b, c) are generalized to 3D-Pythagorean quadruples (a, b, c | d) of spatial geometry which satisfy the equation a<sup>2</sup>+b<sup>2</sup>+c<sup>2</sup>=d<sup>2</sup> with integers (a, b, c, d). Rules for a parametrization of the numbers (a, b, c, d) are derived and a list of all possible nonequivalent cases without common divisors up to d<sup>2</sup> is established. The 3D-Pythagorean quadruples are then generalized to 4D-Pythagorean quintuples (a, b, c, d | e) which satisfy the equation a<sup>2</sup>+b<sup>2</sup>+c<sup>2</sup>+d<sup>2</sup>=e<sup>2</sup> and a parametrization is derived. Relations to the 4-square identity are discussed which leads also to the N-dimensional case. The initial 3D- and 4D-Pythagorean numbers are explicitly calculated up to d<sup>2</sup>, respectively, e<sup>2</sup>.
基金The authors extend their appreciation to the Deanship of Scientific Research at King Khalid University for funding this work through the Large Group Research Project under grant number(R.G.P.2/181/44).
文摘Graph theory has a significant impact and is crucial in the structure of many real-life situations.To simulate uncertainty and ambiguity,many extensions of graph theoretical notions were created.Planar graphs play a vital role in modelling which has the property of non-crossing edges.Although crossing edges benefit,they have some drawbacks,which paved the way for the introduction of planar graphs.The overall purpose of the study is to contribute to the conceptual development of the Pythagorean Neutrosophic graph.The basic methodology of our research is the incorporation of the analogous concepts of planar graphs in the Pythagorean Neutrosophic graphs.The significant finding of our research is the introduction of Pythagorean Neutrosophic Planar graphs,a conceptual blending of Pythagorean Neutro-sophic and Planar graphs.The idea of Pythagorean Neutrosophic multigraphs and dual graphs are also introduced to deal with the ambiguous situations.This paper investigates the Pythagorean Neutrosophic planar values,which form the edges of the Pythagorean neutrosophic graphs.The concept of Pythagorean Neutrosophic dual graphs,isomorphism,co-weak and weak isomorphism have also been explored for Pythagorean Neutrosophic planar graphs.A decision-making algorithm was proposed with a numerical illustra-tion by using the Pythagorean Neutrosophic fuzzy graph.
基金supported by the Key Research and Development Project of Hunan Province(2019SK2331)the Natural Science Foundation of Hunan Province(2019JJ40099,2019JJ40100,2020JJ4339)+2 种基金the Key Scientific Research Project of Hunan Education Department(18A317,19A202)the Scientific Research Fund of Hunan Provincial Education Department(20B272)the Innovation Foundation for Postgraduate of Hunan Institute of Science and Technology(YCX2020A34).
文摘As a generalization of fuzzy set,hesitant probabilistic fuzzy set and pythagorean triangular fuzzy set have their own unique advantages in describing decision information.As modern socioeconomic decision-making problems are becoming more and more complex,it also becomes more and more difficult to appropriately depict decision makers’cognitive information in decision-making process.In order to describe the decision information more comprehensively,we define a pythagorean probabilistic hesitant triangular fuzzy set(PPHTFS)by combining the pythagorean triangular fuzzy set and the probabilistic hesitant fuzzy set.Firstly,the basic operation and scoring function of the pythagorean probabilistic hesitant triangular fuzzy element(PPHTFE)are proposed,and the comparison rule of two PPHTFEs is given.Then,some pythagorean probabilistic hesitant triangular fuzzy aggregation operators are developed,and their properties are also studied.Finally,a multi-attribute decision-making(MADM)model is constructed based on the proposed operators under the pythagorean probabilistic hesitant triangular fuzzy information,and an illustration example is given to demonstrate the practicability and validity of the proposed decision-making method.
基金funding this work through General Research Project under Grant No.GRP/93/43.
文摘Hypersoft set theory is a most advanced form of soft set theory and an innovative mathematical tool for dealing with unclear complications.Pythagorean fuzzy hypersoft set(PFHSS)is the most influential and capable leeway of the hypersoft set(HSS)and Pythagorean fuzzy soft set(PFSS).It is also a general form of the intuitionistic fuzzy hypersoft set(IFHSS),which provides a better and more perfect assessment of the decision-making(DM)process.The fundamental objective of this work is to enrich the precision of decision-making.A novel mixed aggregation operator called Pythagorean fuzzy hypersoft Einstein weighted geometric(PFHSEWG)based on Einstein’s operational laws has been developed.Some necessary properties,such as idempotency,boundedness,and homogeneity,have been presented for the anticipated PFHSEWG operator.Multi-criteria decision-making(MCDM)plays an active role in dealing with the complications of manufacturing design for material selection.However,conventional methods of MCDM usually produce inconsistent results.Based on the proposed PFHSEWG operator,a robust MCDM procedure for material selection in manufacturing design is planned to address these inconveniences.The expected MCDM method for material selection(MS)of cryogenic storing vessels has been established in the real world.Significantly,the planned model for handling inaccurate data based on PFHSS is more operative and consistent.
文摘The aim of this paper is to introduce the concept of a generalized Pythagorean fuzzy soft set(GPFSS),which is a combination of the generalized fuzzy soft sets and Pythagorean fuzzy sets.Several of important operations of GPFSS including complement,restricted union,and extended intersection are discussed.The basic properties of GPFSS are presented.Further,an algorithm of GPFSSs is given to solve the fuzzy soft decision-making.Finally,a comparative analysis between the GPFSS approach and some existing approaches is provided to show their reliability over them.
基金funding this work through General Research Project under Grant No.(R.G.P.2/48/43).
文摘According to the World Health Organization(WHO),cancer is the leading cause of death for children in low and middle-income countries.Around 400,000 kids get diagnosed with this illness each year,and their survival rate depends on the country in which they live.In this article,we present a Pythagorean fuzzy model that may help doctors identify the most likely type of cancer in children at an early stage by taking into account the symptoms of different types of cancer.The Pythagorean fuzzy decision-making techniques that we utilize are Pythagorean Fuzzy TOPSIS,Pythagorean Fuzzy Entropy(PF-Entropy),and Pythagorean Fuzzy PowerWeighted Geometric(PFPWG).Ourmodel is fed with nineteen symptoms and it diagnoses the risk of eight types of cancers in children.We develop an algorithm for each method and calculate its complexity.Additionally,we consider an example to make a clear understanding of our model.We also compare the final results of various tests that prove the authenticity of this study.
基金funding this work through General Research Project under Grant No.R.G.P.327/43.
文摘Experts use Pythagorean fuzzy hypersoft sets(PFHSS)in their investigations to resolve the indeterminate and imprecise information in the decision-making process.Aggregation operators(AOs)perform a leading role in perceptivity among two circulations of prospect and pull out concerns from that perception.In this paper,we extend the concept of PFHSS to interval-valued PFHSS(IVPFHSS),which is the generalized form of intervalvalued intuitionistic fuzzy soft set.The IVPFHSS competently deals with uncertain and ambagious information compared to the existing interval-valued Pythagorean fuzzy soft set.It is the most potent method for amplifying fuzzy data in the decision-making(DM)practice.Some operational laws for IVPFHSS have been proposed.Based on offered operational laws,two inventive AOs have been established:interval-valued Pythagorean fuzzy hypersoft weighted average(IVPFHSWA)and interval-valued Pythagorean fuzzy hypersoft weighted geometric(IVPFHSWG)operators with their essential properties.Multi-criteria group decision-making(MCGDM)shows an active part in contracts with the difficulties in industrial enterprise for material selection.But,the prevalent MCGDM approaches consistently carry irreconcilable consequences.Based on the anticipated AOs,a robust MCGDMtechnique is deliberate formaterial selection in industrial enterprises to accommodate this shortcoming.A real-world application of the projectedMCGDMmethod for material selection(MS)of cryogenic storing vessels is presented.The impacts show that the intended model is more effective and reliable in handling imprecise data based on IVPFHSS.
基金Project supported by the National Natural Science Foundation of China (Grant Nos.11890704,12004042,12104055,and 12104056)Natural Science Foundation of Beijing (Grant No.Z190012)Key Area Research and Development Program of Guangdong Province (Grant No.2018B030326001)。
文摘The utilization of qudits in quantum systems has led to significant advantages in quantum computation and information processing.Therefore,qudits have gained increased attention in recent research for their precise and efficient operations.In this work,we demonstrate the complete population transfer between the next-adjacent energy levels of a transmon qudit using the Pythagorean coupling method and energy level mapping.We achieve a|0>to|2>transfer with a process fidelity of 97.76%in the subspace spanned by|0>to|2>.Moreover,the transfer operation is achieved within a remarkably fast timescale,as short as 20 ns.This study may present a promising avenue for enhancing the operation flexibility and efficiency of qudits in future implementations.
基金This research was funded by Princess Nourah bint Abdulrahman University Researchers Supporting Project Number(PNURSP2022R87),Princess Nourah bint Abdulrahman University,Riyadh,Saudi Arabia.
文摘The substitution box,often known as an S-box,is a nonlinear component that is a part of several block ciphers.Its purpose is to protect cryptographic algorithms from a variety of cryptanalytic assaults.A Multi-Criteria Decision Making(MCDM)problem has a complex selection procedure because of having many options and criteria to choose from.Because of this,statistical methods are necessary to assess the performance score of each S-box and decide which option is the best one available based on this score.Using the Pythagorean Fuzzy-based Technique for Order of Preference by Similarity to Ideal Solution(TOPSIS)method,the major objective of this investigation is to select the optimal S-box to be implemented from a pool of twelve key choices.With the help of the Pythagorean fuzzy set(PFS),the purpose of this article is to evaluate whether this nonlinear component is suitable for use in a variety of encryption applications.In this article,we have considered various characteristics of S-boxes,including nonlinearity,algebraic degree,strict avalanche criterion(SAC),absolute indicator,bit independent criterion(BIC),sum of square indicator,algebraic immunity,transparency order,robustness to differential cryptanalysis,composite algebraic immunity,signal to noise ratio-differential power attack(SNR-DPA),and confusion coefficient variance on some standard S-boxes that are Advanced Encryption Following this,the findings of the investigation are changed into Pythagorean fuzzy numbers in the shape of a matrix.This matrix is then subjected to an analysis using the TOPSIS method,which is dependent on the Pythagorean fuzzy set,to rank the most suitable S-box for use in encryption applications.