In the new era,there is an urgent need to further promote pairing assistance to Tibet,promote the simultaneous construction of a strong agriculture in Tibet and the China's Mainland,and compose a Chinese-style mod...In the new era,there is an urgent need to further promote pairing assistance to Tibet,promote the simultaneous construction of a strong agriculture in Tibet and the China's Mainland,and compose a Chinese-style modernization.Southern Tibet,located in the southeastern part of the Tibet Autonomous Region,includes Shannan City and Nyingchi City,is a region assisted by four provincial partners including Hubei Province.This paper introduces the agricultural environment in southern Tibet,studies its agricultural characteristics,and analyzes the main issues of its pairing assistance.Taking forging the strong consciousness of the Chinese national community as the main line,the paper explores strategies for promoting agricultural high-quality development in southern Tibet through pairing assistance to Tibet from the perspective of agricultural power,and proposes some strategies,such as inheriting agricultural cultural heritage,promoting the upgrading of modern seed industry,enhancing the characteristic advantages of highland barley(naked barley)and animal husbandry industries,and developing edible fungi and cold water fish industries.展开更多
Objective:To reveal the molecular mechanism underlying the compatibility of Salvia miltiorrhiza Bge(S.miltiorrhiza,Dan Shen)and C.tinctorius L.(C.tinctorius,Hong Hua)as an herb pair through network pharmacology and su...Objective:To reveal the molecular mechanism underlying the compatibility of Salvia miltiorrhiza Bge(S.miltiorrhiza,Dan Shen)and C.tinctorius L.(C.tinctorius,Hong Hua)as an herb pair through network pharmacology and subsequent experimental validation.Methods:Network pharmacology was applied to construct an active ingredient-efficacy target-disease protein network to reveal the unique regulation pattern of s.miltiorrhiza and C.tinctorius as herb pair.Molecular docking was used to verify the binding of the components of these herbs and their potential targets.An H9c2 glucose hypoxia model was used to evaluate the efficacy of the components and their synergistic effects,which were evaluated using the combination index.Western blot was performed to detect the protein expression of these targets.Results:Network pharmacology analysis revealed 5 pathways and 8 core targets of s.miltiorrhiza and C.tinctorius in myocardial protection.Five of the core targets were enriched in the hypoxia-inducible factor-1(HIF-1)signaling pathway.S.miltiorrhiza-C.tinctorius achieved vascular tone mainly by regulating the target genes of the HIF-1 pathway.As an upstream gene of the HIF-1 pathway,STAT3 can be activated by the active ingredients cryptotanshinone(Ctan),salvianolic acid B(Sal.B),and myricetin(Myric).Cell experiments revealed that Myric,Sal.B,and Ctan also exhibited synergistic myocardial protective activity.Molecular docking verified the strong binding of Myric,Sal.B,and Ctan to STAT3.Western blot further showed that the active ingredients synergistically upregulated the protein expressionof STAT3.Conclusion:The pharmacodynamic transmission analysis revealed that the active ingredients of S.miltiorrhiza and C.tinctorius can synergistically resist ischemia through various targets and pathways.This study provides a methodological reference for interpreting traditional Chinese medicine compatibility.展开更多
A recently discovered family of kagome lattice materials,AV_(3)Sb_(5)(A=K,Rb,Cs),has attracted great interest,especiallyin the debate over their dominant superconducting pairing symmetry.To explore this issue,we study...A recently discovered family of kagome lattice materials,AV_(3)Sb_(5)(A=K,Rb,Cs),has attracted great interest,especiallyin the debate over their dominant superconducting pairing symmetry.To explore this issue,we study the superconductingpairing behavior within the kagome-lattice Hubbard model through the constrained path Monte Carlo method.It isfound that doping around the Dirac point generates a dominant next-nearest-neighbor-d pairing symmetry driven by on-siteCoulomb interaction U.However,when considering the nearest-neighbor interaction V,it may induce nearest-neighbor-ppairing to become the preferred pairing symmetry.Our results provide useful information to identify the dominant superconductingpairing symmetry in the AV_(3)Sb_(5)family.展开更多
By utilizing the fluctuation exchange approximation method,we perform a study on the superconducting pairing symmetry in a t_(2g) three-orbital model on the square lattice.Although the tight-binding parameters of the ...By utilizing the fluctuation exchange approximation method,we perform a study on the superconducting pairing symmetry in a t_(2g) three-orbital model on the square lattice.Although the tight-binding parameters of the model are based on Sr_(2)RuO_(4),we have systematically studied the evolution of superconducting pairing symmetry with the carrier density and interactions,making our findings relevant to a broader range of material systems.Under a moderate Hund’s coupling,we find that spin fluctuations dominate the superconducting pairing,leading to a prevalent spin-singlet pairing with a d_(x^(2)-y^(2))-wave symmetry for the carrier density within the range of n=1.5-4 per site.By reducing the Hund’s coupling,the charge fluctuations are enhanced and play a crucial role in determining the pairing symmetry,leading to a transition of the pairing symmetry from the spin-singlet d_(x^(2)-y^(2))-wave to the spin-triplet p-wave.Furthermore,we find that the superconducting pairings are orbital dependent.As the carrier density changes from n=4 to n=1.5,the active orbitals for superconducting pairing shift from the quasi-two-dimensional orbital dxy to the quasi-one-dimensional orbitals d_(xz) and d_(yz).展开更多
Recent experimental findings have demonstrated the occurrence of superconductivity in Bernal bilayer graphene when induced by a magnetic field.In this study,we conduct a theoretical investigation of the potential pair...Recent experimental findings have demonstrated the occurrence of superconductivity in Bernal bilayer graphene when induced by a magnetic field.In this study,we conduct a theoretical investigation of the potential pairing symmetry within this superconducting system.By developing a theoretical model,we primarily calculate the free energy of the system with p+ip-wave parallel spin pairing,p+ip-wave anti-parallel spin pairing and d+i d-wave pairing symmetry.Our results confirm that the magnetic field is indeed essential for generating the superconductivity.We discover that the p+ip-wave parallel spin pairing leads to a lower free energy for the system.The numerical calculations of the energy band structure,zero-energy spectral function and density of states for each of the three pairing symmetries under consideration show a strong consistency with the free energy results.展开更多
Using the Skyrme density functional theory,potential energy surfaces of^(240)Pu with constraints on the axial quadrupole and octupole deformations(q_(20)and q_(30))were calculated.The volume-like and surface-like pair...Using the Skyrme density functional theory,potential energy surfaces of^(240)Pu with constraints on the axial quadrupole and octupole deformations(q_(20)and q_(30))were calculated.The volume-like and surface-like pairing forces,as well as a combination of these two forces,were used for the Hartree–Fock–Bogoliubov approximation.Variations in the least-energy fission path,fission barrier,pairing energy,total kinetic energy,scission line,and mass distribution of the fission fragments based on the different forms of the pairing forces were analyzed and discussed.The fission dynamics were studied based on the timedependent generator coordinate method plus the Gaussian overlap approximation.The results demonstrated a sensitivity of the mass and charge distributions of the fission fragments on the form of the pairing force.Based on the investigation of the neutron-induced fission of^(239)Pu,among the volume,mixed,and surface pairing forces,the mixed pairing force presented a good reproduction of the experimental data.展开更多
The utilization of sequence stratigraphic concepts in identifying sands and their spatial continuity in distinct gross depositional settings is key,especially in frontier settings where data paucity is a common challe...The utilization of sequence stratigraphic concepts in identifying sands and their spatial continuity in distinct gross depositional settings is key,especially in frontier settings where data paucity is a common challenge.In the Baka field,onshore Niger Delta,detailed reservoir correlation guided by sequence stratigraphic framework analysis showed the distribution of sand and shale units constituting reservoirseal pairs(RSP)correlatable across the field.Within the 3rd-order packages,it is observed that the lowstand systems tract(LST)and highstand systems tract(HST)contain more RSPs and thicker 4th-and 5th-order sands than the transgressive systems tract(TST).In terms of bathymetry,it is noted that irrespective of systems tracts,the RSP Index(RI)decreases from the proximal shallow/inner shelf settings to the more distal outer shelf areas.Amongst all three systems tracts,intervals interpreted as lowstand prograding complexes contain the best developed sands and highest RSP.Sand development within the LSTs has been controlled by a pronounced growth fault regime accompanied by high subsidence and sedimentation rates.This is linked to the basinward migration of the sands during prolonged sea-level fall,creating significant accommodation space for sand deposition.On the other hand,the TSTs known to mark periods of progressive sea-level rise and landward migration of sandy facies,show thinner sands enclosed in much thicker,laterally extensive,and better-preserved deeper marine shales.Interpreted seismic sections indicate intense growth faulting and channelization that influenced the syn-and postdepositional development of the sand packages across the field.The initial timing of deformation of subregional faults in this area coincides with periods of abrupt falls in sea level.This approach could be useful for predicting sand-prone areas in frontier fields as well as possible reservoir-seal parameters required for some aspects of petroleum system analysis and quick-look volume estimation.展开更多
We study theoretically the electrical shot noise properties of tunnel junctions between a normal metal and a superconductor with the mixture of singlet s-wave and chiral triplet p-wave pairing due to broken inversion ...We study theoretically the electrical shot noise properties of tunnel junctions between a normal metal and a superconductor with the mixture of singlet s-wave and chiral triplet p-wave pairing due to broken inversion symmetry. We investigate how the shot noise properties vary as the relative amplitude between the two parity components in the pairing potential is changed. It is demonstrated that some characteristics of the electrical shot noise properties of such tunnel junctions may depend sensitively on the relative amplitude between the two parity components in the pairing potential, and some significant changes may occur in the electrical shot noise properties when the relative amplitude between the two parity components is varied from the singlet s-wave pairing dominated regime to the chiral triplet p-wave pairing dominated regime. In the chiral triplet p-wave pairing dominated regime, the ratio of noise power to electric current is close to 2e both in the in-gap and in the out-gap region. In the singlet s-wave pairing dominated regime, the value of this ratio is close to 4e in the inner gap region but may reduce to about 2e in the outer gap region as the relative amplitude of the chiral triplet pairing component is increased. The variations of the differential shot noise with the bias voltage also exhibit some significantly different features in different regimes. Such different features can serve as useful diagnostic tools for the determination of the relative magnitude of the two parity components in the pairing potential.展开更多
Autopolyploidy and allopolyploidy may represent an evolutionary advantage and are more common in plants than assumed. However, less attention has been paid to autopolyploidy than to allopolyploidy,and its evolutionary...Autopolyploidy and allopolyploidy may represent an evolutionary advantage and are more common in plants than assumed. However, less attention has been paid to autopolyploidy than to allopolyploidy,and its evolutionary consequences are largely unclear, especially for plants with high ploidy levels. In this study, we developed oligonucleotide(oligo)-based chromosome painting probes to identify individual chromosomes in S. spontaneum. Using fluorescence in situ hybridization(FISH), we investigated chromosome behavior during pachytene, metaphase, anaphase, and telophase of meiosis I(MI) in autotetraploid,autooctoploid, and autodecaploid S. spontaneum clones. All autopolyploid clones showed stable diploidized chromosome behavior;so that homologous chromosomes formed almost exclusively bivalents during MI. Two copies of homologous chromosome 8 with similar sizes in the autotetraploid clone showed preferential pairing with each other with respect to the other copies. However, sequence variation analysis showed no apparent differences among homologs of chromosome 8 and all other chromosomes. We suggest that either the stable diploidized pairing or the preferential pairing between homologous copies of chromosome 8 in the studied autopolyploid sugarcane are accounted for by unknown mechanisms other than DNA sequence similarity. Our results reveal evolutionary consequences of stable meiotic behavior in autopolyploid plants.展开更多
In this article,a comprehensive study of the fission process of Th,U,Pu,and Cm isotopes using a Yukawa-folded meanfield plus standard pairing model is presented.The study focused on analyzing the effects of the pairin...In this article,a comprehensive study of the fission process of Th,U,Pu,and Cm isotopes using a Yukawa-folded meanfield plus standard pairing model is presented.The study focused on analyzing the effects of the pairing interaction on the fragment mass distribution and its dependence on nuclear elongation.The significant role of pairing interactions in the fragment mass distributions of^(230)Th,^(234)U,^(240)Pu,and^(246)Cm was demonstrated.Numerical analysis revealed that increasing the pairing interaction strength decreased the asymmetric fragment mass distribution and increased the symmetric distribution.Furthermore,the odd-even mass differences at symmetric and asymmetric fission points were examined,highlighting their sensitivity to changes in the pairing interaction strength.Systematic analysis of the Th,U,Pu,and Cm isotope fragment mass distributions demonstrated the effectiveness of the model in reproducing the experimental data.In addition,the effects of the zero-point energy and half-width parameter on the fragment mass distribution for^(240)Pu were explored.Thus,this study provides valuable insights into the fission process by emphasizing the importance of pairing interactions and their relationship with nuclear elongation.展开更多
We perform a systematic determinant quantum Monte Carlo(DQMC) study of the dominating pairing symmetry in a doped honeycomb lattice.The Hubbard model is simulated over a full range of filling levels for both weak and ...We perform a systematic determinant quantum Monte Carlo(DQMC) study of the dominating pairing symmetry in a doped honeycomb lattice.The Hubbard model is simulated over a full range of filling levels for both weak and strong interactions.For weak couplings, the d-wave state dominates.The effective susceptibility as a function of filling shows a peak, and its position moves toward half filling as the temperature is increased, from which the optimal filling of the superconducting ground state is estimated.Although the sign problem becomes severe for strong couplings, the simulations access the lowest temperature at which the DQMC method generates reliable results.As the coupling is strengthened, the d-wave state is enhanced in the high-filling region.Our systematic DQMC results provide new insights into the superconducting pairing symmetry in the doped honeycomb lattice.展开更多
基金Supported by the Project of National Social Science Foundation of China(22CMZ015).
文摘In the new era,there is an urgent need to further promote pairing assistance to Tibet,promote the simultaneous construction of a strong agriculture in Tibet and the China's Mainland,and compose a Chinese-style modernization.Southern Tibet,located in the southeastern part of the Tibet Autonomous Region,includes Shannan City and Nyingchi City,is a region assisted by four provincial partners including Hubei Province.This paper introduces the agricultural environment in southern Tibet,studies its agricultural characteristics,and analyzes the main issues of its pairing assistance.Taking forging the strong consciousness of the Chinese national community as the main line,the paper explores strategies for promoting agricultural high-quality development in southern Tibet through pairing assistance to Tibet from the perspective of agricultural power,and proposes some strategies,such as inheriting agricultural cultural heritage,promoting the upgrading of modern seed industry,enhancing the characteristic advantages of highland barley(naked barley)and animal husbandry industries,and developing edible fungi and cold water fish industries.
基金supported by the National Natural Science Foundation of China(81703947)the Fundamental Research Funds for the Central Universities(2019-JYB-XJSJJ-011).
文摘Objective:To reveal the molecular mechanism underlying the compatibility of Salvia miltiorrhiza Bge(S.miltiorrhiza,Dan Shen)and C.tinctorius L.(C.tinctorius,Hong Hua)as an herb pair through network pharmacology and subsequent experimental validation.Methods:Network pharmacology was applied to construct an active ingredient-efficacy target-disease protein network to reveal the unique regulation pattern of s.miltiorrhiza and C.tinctorius as herb pair.Molecular docking was used to verify the binding of the components of these herbs and their potential targets.An H9c2 glucose hypoxia model was used to evaluate the efficacy of the components and their synergistic effects,which were evaluated using the combination index.Western blot was performed to detect the protein expression of these targets.Results:Network pharmacology analysis revealed 5 pathways and 8 core targets of s.miltiorrhiza and C.tinctorius in myocardial protection.Five of the core targets were enriched in the hypoxia-inducible factor-1(HIF-1)signaling pathway.S.miltiorrhiza-C.tinctorius achieved vascular tone mainly by regulating the target genes of the HIF-1 pathway.As an upstream gene of the HIF-1 pathway,STAT3 can be activated by the active ingredients cryptotanshinone(Ctan),salvianolic acid B(Sal.B),and myricetin(Myric).Cell experiments revealed that Myric,Sal.B,and Ctan also exhibited synergistic myocardial protective activity.Molecular docking verified the strong binding of Myric,Sal.B,and Ctan to STAT3.Western blot further showed that the active ingredients synergistically upregulated the protein expressionof STAT3.Conclusion:The pharmacodynamic transmission analysis revealed that the active ingredients of S.miltiorrhiza and C.tinctorius can synergistically resist ischemia through various targets and pathways.This study provides a methodological reference for interpreting traditional Chinese medicine compatibility.
基金supported by Beijing Natural Science Foundation(Grant No.1242022).The numerical simulations in this work were performed at HSCC of Beijing Normal University.
文摘A recently discovered family of kagome lattice materials,AV_(3)Sb_(5)(A=K,Rb,Cs),has attracted great interest,especiallyin the debate over their dominant superconducting pairing symmetry.To explore this issue,we study the superconductingpairing behavior within the kagome-lattice Hubbard model through the constrained path Monte Carlo method.It isfound that doping around the Dirac point generates a dominant next-nearest-neighbor-d pairing symmetry driven by on-siteCoulomb interaction U.However,when considering the nearest-neighbor interaction V,it may induce nearest-neighbor-ppairing to become the preferred pairing symmetry.Our results provide useful information to identify the dominant superconductingpairing symmetry in the AV_(3)Sb_(5)family.
基金Project supported by the National Key Research and Development Program of China (Grant No.2021YFA1400400)the National Natural Science Foundation of China (Grant Nos.92165205,12074175,and 12374137)。
文摘By utilizing the fluctuation exchange approximation method,we perform a study on the superconducting pairing symmetry in a t_(2g) three-orbital model on the square lattice.Although the tight-binding parameters of the model are based on Sr_(2)RuO_(4),we have systematically studied the evolution of superconducting pairing symmetry with the carrier density and interactions,making our findings relevant to a broader range of material systems.Under a moderate Hund’s coupling,we find that spin fluctuations dominate the superconducting pairing,leading to a prevalent spin-singlet pairing with a d_(x^(2)-y^(2))-wave symmetry for the carrier density within the range of n=1.5-4 per site.By reducing the Hund’s coupling,the charge fluctuations are enhanced and play a crucial role in determining the pairing symmetry,leading to a transition of the pairing symmetry from the spin-singlet d_(x^(2)-y^(2))-wave to the spin-triplet p-wave.Furthermore,we find that the superconducting pairings are orbital dependent.As the carrier density changes from n=4 to n=1.5,the active orbitals for superconducting pairing shift from the quasi-two-dimensional orbital dxy to the quasi-one-dimensional orbitals d_(xz) and d_(yz).
基金Project supported by the National Natural Science Foundation of China (Grant No.12074130)the Natural Science Foundation of Guangdong Province (Grant No.2021A1515012340)。
文摘Recent experimental findings have demonstrated the occurrence of superconductivity in Bernal bilayer graphene when induced by a magnetic field.In this study,we conduct a theoretical investigation of the potential pairing symmetry within this superconducting system.By developing a theoretical model,we primarily calculate the free energy of the system with p+ip-wave parallel spin pairing,p+ip-wave anti-parallel spin pairing and d+i d-wave pairing symmetry.Our results confirm that the magnetic field is indeed essential for generating the superconductivity.We discover that the p+ip-wave parallel spin pairing leads to a lower free energy for the system.The numerical calculations of the energy band structure,zero-energy spectral function and density of states for each of the three pairing symmetries under consideration show a strong consistency with the free energy results.
基金supported by the National Key R&D Program of China(No.2022YFA1602000)National Natural Science Foundation of China(Nos.12275081,U2067205,11790325,and U1732138)the Continuous-support Basic Scientific Research Project。
文摘Using the Skyrme density functional theory,potential energy surfaces of^(240)Pu with constraints on the axial quadrupole and octupole deformations(q_(20)and q_(30))were calculated.The volume-like and surface-like pairing forces,as well as a combination of these two forces,were used for the Hartree–Fock–Bogoliubov approximation.Variations in the least-energy fission path,fission barrier,pairing energy,total kinetic energy,scission line,and mass distribution of the fission fragments based on the different forms of the pairing forces were analyzed and discussed.The fission dynamics were studied based on the timedependent generator coordinate method plus the Gaussian overlap approximation.The results demonstrated a sensitivity of the mass and charge distributions of the fission fragments on the form of the pairing force.Based on the investigation of the neutron-induced fission of^(239)Pu,among the volume,mixed,and surface pairing forces,the mixed pairing force presented a good reproduction of the experimental data.
基金sponsored by the Shell Petroleum Development Company of Nigeria Limited(SPDC).
文摘The utilization of sequence stratigraphic concepts in identifying sands and their spatial continuity in distinct gross depositional settings is key,especially in frontier settings where data paucity is a common challenge.In the Baka field,onshore Niger Delta,detailed reservoir correlation guided by sequence stratigraphic framework analysis showed the distribution of sand and shale units constituting reservoirseal pairs(RSP)correlatable across the field.Within the 3rd-order packages,it is observed that the lowstand systems tract(LST)and highstand systems tract(HST)contain more RSPs and thicker 4th-and 5th-order sands than the transgressive systems tract(TST).In terms of bathymetry,it is noted that irrespective of systems tracts,the RSP Index(RI)decreases from the proximal shallow/inner shelf settings to the more distal outer shelf areas.Amongst all three systems tracts,intervals interpreted as lowstand prograding complexes contain the best developed sands and highest RSP.Sand development within the LSTs has been controlled by a pronounced growth fault regime accompanied by high subsidence and sedimentation rates.This is linked to the basinward migration of the sands during prolonged sea-level fall,creating significant accommodation space for sand deposition.On the other hand,the TSTs known to mark periods of progressive sea-level rise and landward migration of sandy facies,show thinner sands enclosed in much thicker,laterally extensive,and better-preserved deeper marine shales.Interpreted seismic sections indicate intense growth faulting and channelization that influenced the syn-and postdepositional development of the sand packages across the field.The initial timing of deformation of subregional faults in this area coincides with periods of abrupt falls in sea level.This approach could be useful for predicting sand-prone areas in frontier fields as well as possible reservoir-seal parameters required for some aspects of petroleum system analysis and quick-look volume estimation.
文摘We study theoretically the electrical shot noise properties of tunnel junctions between a normal metal and a superconductor with the mixture of singlet s-wave and chiral triplet p-wave pairing due to broken inversion symmetry. We investigate how the shot noise properties vary as the relative amplitude between the two parity components in the pairing potential is changed. It is demonstrated that some characteristics of the electrical shot noise properties of such tunnel junctions may depend sensitively on the relative amplitude between the two parity components in the pairing potential, and some significant changes may occur in the electrical shot noise properties when the relative amplitude between the two parity components is varied from the singlet s-wave pairing dominated regime to the chiral triplet p-wave pairing dominated regime. In the chiral triplet p-wave pairing dominated regime, the ratio of noise power to electric current is close to 2e both in the in-gap and in the out-gap region. In the singlet s-wave pairing dominated regime, the value of this ratio is close to 4e in the inner gap region but may reduce to about 2e in the outer gap region as the relative amplitude of the chiral triplet pairing component is increased. The variations of the differential shot noise with the bias voltage also exhibit some significantly different features in different regimes. Such different features can serve as useful diagnostic tools for the determination of the relative magnitude of the two parity components in the pairing potential.
基金funded by the Startup Foundation from Nantong University (03083074)partially supported by the National Natural Science Foundation of China (31771862)+1 种基金Special Funds for Technology Innovation of Fujian Agriculture and Forestry University(KFA20001A)the Research Program of Guangxi Key Laboratory for Sugarcane Biology (GXKLSCB-20190203)。
文摘Autopolyploidy and allopolyploidy may represent an evolutionary advantage and are more common in plants than assumed. However, less attention has been paid to autopolyploidy than to allopolyploidy,and its evolutionary consequences are largely unclear, especially for plants with high ploidy levels. In this study, we developed oligonucleotide(oligo)-based chromosome painting probes to identify individual chromosomes in S. spontaneum. Using fluorescence in situ hybridization(FISH), we investigated chromosome behavior during pachytene, metaphase, anaphase, and telophase of meiosis I(MI) in autotetraploid,autooctoploid, and autodecaploid S. spontaneum clones. All autopolyploid clones showed stable diploidized chromosome behavior;so that homologous chromosomes formed almost exclusively bivalents during MI. Two copies of homologous chromosome 8 with similar sizes in the autotetraploid clone showed preferential pairing with each other with respect to the other copies. However, sequence variation analysis showed no apparent differences among homologs of chromosome 8 and all other chromosomes. We suggest that either the stable diploidized pairing or the preferential pairing between homologous copies of chromosome 8 in the studied autopolyploid sugarcane are accounted for by unknown mechanisms other than DNA sequence similarity. Our results reveal evolutionary consequences of stable meiotic behavior in autopolyploid plants.
基金This work was supported by the National Natural Science Foundation of China(Nos.12275115 and 12175097)the Educational Department of Liaoning Province(No.LJKMZ20221410).
文摘In this article,a comprehensive study of the fission process of Th,U,Pu,and Cm isotopes using a Yukawa-folded meanfield plus standard pairing model is presented.The study focused on analyzing the effects of the pairing interaction on the fragment mass distribution and its dependence on nuclear elongation.The significant role of pairing interactions in the fragment mass distributions of^(230)Th,^(234)U,^(240)Pu,and^(246)Cm was demonstrated.Numerical analysis revealed that increasing the pairing interaction strength decreased the asymmetric fragment mass distribution and increased the symmetric distribution.Furthermore,the odd-even mass differences at symmetric and asymmetric fission points were examined,highlighting their sensitivity to changes in the pairing interaction strength.Systematic analysis of the Th,U,Pu,and Cm isotope fragment mass distributions demonstrated the effectiveness of the model in reproducing the experimental data.In addition,the effects of the zero-point energy and half-width parameter on the fragment mass distribution for^(240)Pu were explored.Thus,this study provides valuable insights into the fission process by emphasizing the importance of pairing interactions and their relationship with nuclear elongation.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.11774019,11504067,11574032,and 11734002)the National Key Research and Development Program of China(Grant No.2016YFA0300304)the Fundamental Research Funds for the Central Universities,China(Grant No.HIT.NSRIF.2019057)
文摘We perform a systematic determinant quantum Monte Carlo(DQMC) study of the dominating pairing symmetry in a doped honeycomb lattice.The Hubbard model is simulated over a full range of filling levels for both weak and strong interactions.For weak couplings, the d-wave state dominates.The effective susceptibility as a function of filling shows a peak, and its position moves toward half filling as the temperature is increased, from which the optimal filling of the superconducting ground state is estimated.Although the sign problem becomes severe for strong couplings, the simulations access the lowest temperature at which the DQMC method generates reliable results.As the coupling is strengthened, the d-wave state is enhanced in the high-filling region.Our systematic DQMC results provide new insights into the superconducting pairing symmetry in the doped honeycomb lattice.