Accurate Q parameter is hard to be obtained, but there is great difference between Q measurements from different measurement methods in seismic physical modelling. The influence factors, stability and accuracy of diff...Accurate Q parameter is hard to be obtained, but there is great difference between Q measurements from different measurement methods in seismic physical modelling. The influence factors, stability and accuracy of different methods are analyzed through standard sample experiment and the seismic physical modelling. Based on this, we proposed an improved method for improving accuracy of pulse transmission method, in which the samples with similar acoustic properties to the test sample are selected as the reference samples. We assess the stability and accuracy of the pulse transmission, pulse transmission insertion, and reflection wave methods for obtaining the quality factor Q using standard and reference samples and seismic physical modeling. The results suggest that the Q-values obtained by the pulse transmission method are strongly affected by diffraction and the error is 50% or greater, whereas the relative error of the improved pulse transmission method is about 10%. By using a theoretical diffraction correction method and the improved measurement method, the differences among the Q-measuring methods can be limited to within 10%.展开更多
The resolution of seismic data is critical to seismic data processing and the subsequent interpretation of fine structures. In conventional resolution improvement methods, the seismic data is assumed stationary and th...The resolution of seismic data is critical to seismic data processing and the subsequent interpretation of fine structures. In conventional resolution improvement methods, the seismic data is assumed stationary and the noise level not changes with space, whereas the actual situation does not satisfy this assumption, so that results after resolution improvement processing is not up to the expected effect. To solve these problems, we propose a seismic resolution improvement method based on the secondary time-frequency spectrum. First, we propose the secondary time-frequency spectrum based on S transform (ST) and discuss the reflection coefficient sequence and time-dependent wavelet in the secondary time frequency spectrum. Second, using the secondary time frequency spectrum, we design a two- dimensional filter to extract the amplitude spectrum of the time-dependent wavelet. Then, we discuss the improvement of the resolution operator in noisy environments and propose a novel approach for determining the broad frequency range of the resolution operator in the time- fi'equency-space domain. Finally, we apply the proposed method to synthetic and real data and compare the results of the traditional spectrum-modeling deconvolution and Q compensation method. The results suggest that the proposed method does not need to estimate the Q value and the resolution is not limited by the bandwidth of the source. Thus, the resolution of the seismic data is improved sufficiently based on the signal-to-noise ratio (SNR).展开更多
Considering the level distribution of soil layers, the soils surrounding pile are simulated with level finite layer elements. Supposing that the vertical deformation of the soil elements surrounding pile varies in the...Considering the level distribution of soil layers, the soils surrounding pile are simulated with level finite layer elements. Supposing that the vertical deformation of the soil elements surrounding pile varies in the form of exponent function with radial distance, and considering the nonlinear constitutive relation of stress and strain, the stiffness matrix is established. The mechanics behavior of the pile—soil interface is simulated with a nonlinear interface element. This method can truly express the behavior of the pile-soil system. The load-settlement relation Q-S curves of two big diameter prototype piles on bearing test are analyzed, and satisfying results are obtained. This method is reasonable in theory and feasible in engineering.展开更多
This paper is devoted to investigations on the general theory of inverse chain of arbitrary inverse relation with emphasis on tile inverse chain of Gould-Hsu inverse and of its q-analogue. Some new identities are obta...This paper is devoted to investigations on the general theory of inverse chain of arbitrary inverse relation with emphasis on tile inverse chain of Gould-Hsu inverse and of its q-analogue. Some new identities are obtained under this point of view.展开更多
基金supported by the National Nature Science Foundation of China(No.41474112)the National Science and Technology Major Project(No.2017ZX05005-004)
文摘Accurate Q parameter is hard to be obtained, but there is great difference between Q measurements from different measurement methods in seismic physical modelling. The influence factors, stability and accuracy of different methods are analyzed through standard sample experiment and the seismic physical modelling. Based on this, we proposed an improved method for improving accuracy of pulse transmission method, in which the samples with similar acoustic properties to the test sample are selected as the reference samples. We assess the stability and accuracy of the pulse transmission, pulse transmission insertion, and reflection wave methods for obtaining the quality factor Q using standard and reference samples and seismic physical modeling. The results suggest that the Q-values obtained by the pulse transmission method are strongly affected by diffraction and the error is 50% or greater, whereas the relative error of the improved pulse transmission method is about 10%. By using a theoretical diffraction correction method and the improved measurement method, the differences among the Q-measuring methods can be limited to within 10%.
基金financially supported by the National 973 Project(No.2014CB239006)the National Natural Science Foundation of China(No.41104069 and 41274124)the Fundamental Research Funds for Central Universities(No.R1401005A)
文摘The resolution of seismic data is critical to seismic data processing and the subsequent interpretation of fine structures. In conventional resolution improvement methods, the seismic data is assumed stationary and the noise level not changes with space, whereas the actual situation does not satisfy this assumption, so that results after resolution improvement processing is not up to the expected effect. To solve these problems, we propose a seismic resolution improvement method based on the secondary time-frequency spectrum. First, we propose the secondary time-frequency spectrum based on S transform (ST) and discuss the reflection coefficient sequence and time-dependent wavelet in the secondary time frequency spectrum. Second, using the secondary time frequency spectrum, we design a two- dimensional filter to extract the amplitude spectrum of the time-dependent wavelet. Then, we discuss the improvement of the resolution operator in noisy environments and propose a novel approach for determining the broad frequency range of the resolution operator in the time- fi'equency-space domain. Finally, we apply the proposed method to synthetic and real data and compare the results of the traditional spectrum-modeling deconvolution and Q compensation method. The results suggest that the proposed method does not need to estimate the Q value and the resolution is not limited by the bandwidth of the source. Thus, the resolution of the seismic data is improved sufficiently based on the signal-to-noise ratio (SNR).
文摘Considering the level distribution of soil layers, the soils surrounding pile are simulated with level finite layer elements. Supposing that the vertical deformation of the soil elements surrounding pile varies in the form of exponent function with radial distance, and considering the nonlinear constitutive relation of stress and strain, the stiffness matrix is established. The mechanics behavior of the pile—soil interface is simulated with a nonlinear interface element. This method can truly express the behavior of the pile-soil system. The load-settlement relation Q-S curves of two big diameter prototype piles on bearing test are analyzed, and satisfying results are obtained. This method is reasonable in theory and feasible in engineering.
基金Supported by the National Science Foundation of China (19771014)
文摘This paper is devoted to investigations on the general theory of inverse chain of arbitrary inverse relation with emphasis on tile inverse chain of Gould-Hsu inverse and of its q-analogue. Some new identities are obtained under this point of view.